Come si usa la regola trapezoidale con n = 4 per stimare l'integrale int_0 ^ (pi / 2) cos (x ^ 2) dx?

Come si usa la regola trapezoidale con n = 4 per stimare l'integrale int_0 ^ (pi / 2) cos (x ^ 2) dx?
Anonim

Risposta:

# Int_0 ^ (PI / 2) cos (x ^ 2) dx ~~ 0.83 #

Spiegazione:

La regola trapezoidale ci dice che:

# Int_b ^ af (x) dx ~~ h / 2 f (x_0) + f (x_n) 2 f (x_1) + f (x_2) + cdotsf (x_ (n-1)) # dove # H = (b-a) / n #

# = H (pi / 2-0) / 4 = pi / 8 #

Quindi abbiamo:

# Int_0 ^ (pi / 2) cos (x ^ 2) dx ~~ pi / 16 f (0) + f (pi / 2) 2 f (pi / 8) + f (pi / 4) + f ((3pi) / 8) #

# = Pi / 16 cos ((0) ^ 2) + cos ((pi / 2) ^ 2) +2 cos ((pi / 8) ^ 2) + cos ((pi / 4) ^ 2) + cos (((3pi) / 8) ^ 2) #

# ~~ pi / 16 1-0.78 + 1,97 + 1,63 + 0,36 #

# ~~ pi / 16 4.23 #

#~~0.83#