Risposta:
Il limite per trovare la velocità rappresenta la velocità reale, mentre senza il limite si trova la velocità media.
Spiegazione:
La relazione fisica tra di loro usando le medie è:
Dove
Tuttavia, anche se il corridore potrebbe avere una velocità di
Supponiamo di lanciare un proiettile ad una velocità sufficientemente alta da poter colpire un bersaglio a distanza. Dato che la velocità è di 34 m / s e la distanza del raggio è di 73 m, quali sono due possibili angoli di lancio del proiettile?
Alpha_1 ~ = 19,12 ° alpha_2 ~ = 70,88 °. Il movimento è un movimento parabolico, cioè la composizione di due movimenti: il primo, orizzontale, è un movimento uniforme con legge: x = x_0 + v_ (0x) t e il secondo è un movimento decelerato con legge: y = y_0 + v_ (0y) t + 1 / 2g t ^ 2, dove: (x, y) è la posizione al tempo t; (x_0, y_0) è la posizione iniziale; (v_ (0x), v_ (0y)) sono le componenti della velocità iniziale, vale a dire per le leggi di trigonometria: v_ (0x) = v_0cosalpha v_ (0y) = v_0sinalpha (alfa è l'angolo con cui si forma la velocità vettoriale l
L'intensità di un segnale radio dalla stazione radio varia in modo inversamente proporzionale al quadrato della distanza dalla stazione. Supponiamo che l'intensità sia di 8000 unità ad una distanza di 2 miglia. Quale sarà l'intensità ad una distanza di 6 miglia?
(Appr.) 888.89 "unità". Lascia che io, e d resp. denota l'intensità del segnale radio e la distanza in miglia) del luogo dalla stazione radio. Ci viene dato che, propo 1 / d ^ 2 rArr I = k / d ^ 2, o, Id ^ 2 = k, kne0. Quando I = 8000, d = 2:. k = 8000 (2) ^ 2 = 32000. Quindi, Id ^ 2 = k = 32000 Ora, per trovare I ", quando" d = 6:. I = 32000 / d ^ 2 = 32000/36 ~~ 888,89 "unità".
La scuola di Krisha è a 40 miglia di distanza. Guidava a una velocità di 40 miglia all'ora per la prima metà della distanza, poi a 60 mph per il resto della distanza. Qual era la sua velocità media per l'intero viaggio?
V_ (avg) = 48 "mph" Consente di suddividere questo in due casi, il primo e il secondo mezzo di viaggio. Determina la distanza s_1 = 20, con la velocità v_1 = 40 Lei guida la distanza s_2 = 20, con la velocità v_2 = 60 Il tempo per ogni caso deve essere dato da t = s / v Il tempo necessario per guidare la prima metà: t_1 = s_1 / v_1 = 20/40 = 1/2 Il tempo necessario per guidare la seconda metà: t_2 = s_2 / v_2 = 20/60 = 1/3 La distanza totale e il tempo devono essere rispettivamente s_ "totale" = 40 t_ "totale" = t_1 + t_2 = 1/2 + 1/3 = 5/6 La velocità media v_ ( avg) =