Come trovo l'integrale intsin ^ -1 (x) dx?

Come trovo l'integrale intsin ^ -1 (x) dx?
Anonim

Con l'integrazione di parti, #int sin ^ {- 1} xdx = xsin ^ {- 1} x + sqrt {1-x ^ 2} + C #

Vediamo alcuni dettagli.

Permettere # U = sin ^ {- 1} x # e # Dv = dx #.

#Rightarrow du = {dx} / sqrt {1-x ^ 2} # e # V = x #

Con l'integrazione di parti, #int sin ^ {- 1} xdx = xsin ^ {- 1} x-intx / sqrt {1-x ^ 2} dx #

Permettere # U = 1-x ^ 2 #. #Rightarrow {du} / {dx} = - 2x Rightarrow dx = {du} / {- 2x} #

# intx / sqrt {1-x ^ 2} dx = int x / sqrt {u} {du} / {- 2x} = - 1 / 2intu ^ {- 1/2} du #

# = - u ^ {1/2} + C = -sqrt {1-x ^ 2} + C #

Quindi, #int sin ^ {- 1} xdx = xsin ^ {- 1} x + sqrt {1-x ^ 2} + C #