Risposta:
Vedi spiegazione …
Spiegazione:
Ecco uno schizzo di una prova per contraddizione:
supporre
Senza perdita di generalità, possiamo supporre che
Quindi per definizione:
# 5 = (p / q) ^ 2 = p ^ 2 / q ^ 2 #
Moltiplica entrambe le estremità di
# 5 q ^ 2 = p ^ 2 #
Così
Allora da allora
Così
Quindi abbiamo:
# 5 q ^ 2 = p ^ 2 = (5m) ^ 2 = 5 * 5 * m ^ 2 #
Dividi le due estremità di
# q ^ 2 = 5 m ^ 2 #
Dividi le due estremità di
# 5 = q ^ 2 / m ^ 2 = (q / m) ^ 2 #
Così
Adesso
Quindi la nostra ipotesi
Cosa è (radice quadrata di [6] + 2 radice quadrata di [2]) (radice quadrata 4 [6] - radice quadrata 3 di 2)?
12 + 5sqrt12 Moltiplichiamo la moltiplicazione incrociata, cioè (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) equivale a sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Le radici quadrate stesse corrispondono al numero sotto la radice, quindi 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Mettiamo sqrt2sqrt6 in evidenza: 24 + (8-3) sqrt6sqrt2 - 12 Possiamo unire queste due radici in una, dopo tutto sqrtxsqrty = sqrt (xy) finché sono ' non sono entrambi negativi. Quindi, otteniamo 24 + 5sqrt12 - 12 Infine, prendiamo semplicemente la differenza delle due costanti e le chiamiamo un giorno 12 + 5sqrt12
Qual è la forma semplificata di radice quadrata di 10 - radice quadrata di 5 su radice quadrata di 10 + radice quadrata di 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) color (bianco) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) colore (bianco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (white) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) colore (bianco) ("XXX") = (2-2sqrt2 + 1) / (2-1) colore (bianco) ( "XXX") = 3-2sqrt (2)
Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) La prima cosa che possiamo fare è cancellare le radici su quelle con i poteri pari. Poiché: sqrt (x ^ 2) = xe sqrt (x ^ 4) = x ^ 2 per qualsiasi numero, possiamo solo dire che sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ora, 7 ^ 3 può essere riscritto come 7 ^ 2 * 7, e che 7 ^ 2 può uscire dalla radice! Lo stesso vale per 7 ^ 5 ma è stato riscritto come 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7)