Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?

Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?
Anonim

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) #

La prima cosa che possiamo fare è cancellare le radici su quelle con i poteri pari. Da:

#sqrt (x ^ 2) = x # e #sqrt (x ^ 4) = x ^ 2 # per qualsiasi numero, possiamo solo dire questo

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) #

Adesso, #7^3# può essere riscritto come #7^2*7#, e quello #7^2# può uscire dalla radice! Lo stesso vale per #7^5# ma è riscritto come #7^4*7#

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) #

Ora mettiamo la radice in evidenza, #sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# (1 + 7 + 49) sqrt (7) + 7 + 49 #

E somma i numeri che sono rimasti da sommare

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = 56 + 57sqrt (7) #

C'è un modo per trovare la formula generale per queste somme usando progressioni geometriche, ma non lo metterò qui perché non sono sicuro che ce l'abbiate e non lo faccia troppo a lungo.