
Se il triangolo è un triangolo rettangolo, il quadrato del lato più grande è uguale alla somma dei quadrati dei lati più piccoli. Ma il triangolo è acuto ad angolo. Quindi il quadrato del lato più grande è inferiore alla somma dei quadrati dei lati più piccoli. Quindi
Il perimetro di un triangolo è 29 mm. La lunghezza del primo lato è il doppio della lunghezza del secondo lato. La lunghezza del terzo lato è 5 in più rispetto alla lunghezza del secondo lato. Come trovi le lunghezze laterali del triangolo?

S_1 = 12 s_2 = 6 s_3 = 11 Il perimetro di un triangolo è la somma delle lunghezze di tutti i suoi lati. In questo caso, è dato che il perimetro è 29 mm. Quindi per questo caso: s_1 + s_2 + s_3 = 29 Quindi, risolvendo per la lunghezza dei lati, traduciamo le istruzioni nella forma data in equazione. "La lunghezza del 1 ° lato è il doppio della lunghezza del 2 ° lato" Per risolvere questo problema, assegniamo una variabile casuale a s_1 o s_2. Per questo esempio, vorrei che x sia la lunghezza del 2 ° lato per evitare di avere frazioni nella mia equazione. quindi sappiamo che: s_1
Il triangolo A ha lati di lunghezze 1 3, 1 4 e 1 8. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 4. Quali sono le possibili lunghezze degli altri due lati del triangolo B?

56/13 e 72/13, 26/7 e 36/7, o 26/9 e 28/9 Poiché i triangoli sono simili, ciò significa che le lunghezze laterali hanno lo stesso rapporto, cioè possiamo moltiplicare tutte le lunghezze e prendine un altro. Ad esempio, un triangolo equilatero ha lunghezze laterali (1, 1, 1) e un triangolo simile potrebbe avere lunghezze (2, 2, 2) o (78, 78, 78) o qualcosa di simile. Un triangolo isoscele può avere (3, 3, 2) in modo che un simile possa avere (6, 6, 4) o (12, 12, 8). Quindi qui iniziamo con (13, 14, 18) e abbiamo tre possibilità: (4,?,?), (?, 4,?) O (?,?, 4). Pertanto, chiediamo quali sono i rapporti
Il triangolo A ha i lati delle lunghezze 15, 12 e 18. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 3. Quali sono le possibili lunghezze degli altri due lati del triangolo B?

(3,12 / 5,18 / 5), (15 / 4,3,9 / 2), (5 / 2,2,3)> Poiché il triangolo B ha 3 lati, ognuno di essi potrebbe essere di lunghezza 3 e quindi ci sono 3 diverse possibilità. Poiché i triangoli sono simili, i rapporti dei lati corrispondenti sono uguali. Assegna un nome ai 3 lati del triangolo B, a, bec, corrispondenti ai lati 15, 12 e 18 nel triangolo A. "----------------------- ----------------------------- "Se il lato a = 3 allora il rapporto dei lati corrispondenti = 3/15 = 1/5 quindi b = 12xx1 / 5 = 12/5 "e" c = 18xx1 / 5 = 18/5 I 3 lati di B = (3,12 / 5,18 / 5) "----------- ------