Quali sono le coordinate del punto che è 1/4 del percorso da A (-6, -3) a B (6, 1)?

Quali sono le coordinate del punto che è 1/4 del percorso da A (-6, -3) a B (6, 1)?
Anonim

Risposta:

Il punto #1/4# del modo è #(-3,-2)#

Spiegazione:

Iniziare con:

#d = sqrt ((x_ "end" -x_ "start") ^ 2+ (y_ "end" -y_ "start") ^ 2) #

# 1 / 4d = 1 / 4sqrt ((x_ "end" -x_ "start") ^ 2+ (y_ "end" -y_ "start") ^ 2) #

# 1 / 4d = sqrt (1/16 ((x_ "end" -x_ "start") ^ 2+ (y_ "end" -y_ "start") ^ 2)) #

# 1 / 4d = sqrt (((x_ "end" -x_ "start") / 4) ^ 2 + ((y_ "end" -y_ "start") / 4) ^ 2)) #

#x_ (1/4) = (x_ "end" -x_ "start") / 4 + x_ "start" #

#y_ (1/4) = (y_ "end" -y_ "start") / 4+ y_ "start" #

#x_ (1/4) = (x_ "end" -x_ "start") / 4 + 4x_ "start" / 4 #

#y_ (1/4) = (y_ "end" -y_ "start") / 4+ 4y_ "start" / 4 #

#x_ (1/4) = (x_ "fine" + 3x_ "inizio") / 4 #

#y_ (1/4) = (y_ "end" + 3y_ "start") / 4 #

#x_ "start" = -6 # e #y_ "start" = -3 #:

#x_ (1/4) = (x_ "fine" +3 (-6)) / 4 #

#y_ (1/4) = (y_ "fine" +3 (-3)) / 4 #

#x_ "end" = 6 # e #y_ "end" = 1 #:

#x_ (1/4) = (6 + 3 (-6)) / 4 #

#y_ (1/4) = (1 + 3 (-3)) / 4 #

#x_ (1/4) = -3 #

#y_ (1/4) = -2 #