
Risposta:
Vedi sotto.
Spiegazione:
La sequenza di Fibonacci è correlata al triangolo di Pascal in quanto la somma delle diagonali del triangolo di Pascal è uguale al corrispondente termine di sequenza di Fibonacci.
Questa relazione è presente in questo video DONG. Passa alle 5:34 se vuoi solo vedere la relazione.
Risposta:
Aggiungendo solo la risposta di Bartolomeo.
Spiegazione:
Come accennato, i valori delle diagonali 'superficiali' del triangolo di Pascal si sommano ai numeri di Fibonacci.
In termini matematici:
dove
Questo può essere visualizzato di seguito:
La base di un triangolo di una data area varia inversamente come l'altezza. Un triangolo ha una base di 18 cm e un'altezza di 10 cm. Come trovi l'altezza di un triangolo di area uguale e con base di 15 cm?

Altezza = 12 cm L'area di un triangolo può essere determinata con l'area dell'equazione = 1/2 * base * altezza Trova l'area del primo triangolo, sostituendo le misure del triangolo nell'equazione. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Lascia che l'altezza del secondo triangolo = x. Quindi l'equazione di area per il secondo triangolo = 1/2 * 15 * x Poiché le aree sono uguali, 90 = 1/2 * 15 * x volte entrambi i lati di 2. 180 = 15x x = 12
Il primo e il secondo termine di una sequenza geometrica sono rispettivamente il primo e il terzo termine di una sequenza lineare. Il quarto termine della sequenza lineare è 10 e la somma dei suoi primi cinque termini è 60 Trova i primi cinque termini della sequenza lineare?

{16, 14, 12, 10, 8} Una tipica sequenza geometrica può essere rappresentata come c_0a, c_0a ^ 2, cdots, c_0a ^ k e una tipica sequenza aritmetica come c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chiamando c_0 a come primo elemento per la sequenza geometrica abbiamo {(c_0 a ^ 2 = c_0a + 2Delta -> "Primo e secondo di GS sono il primo e il terzo di un LS"), (c_0a + 3Delta = 10- > "Il quarto termine della sequenza lineare è 10"), (5c_0a + 10Delta = 60 -> "La somma dei suoi primi cinque termini è 60"):} Risoluzione per c_0, a, Delta otteniamo c_0 = 64/3 , a = 3/4
Il secondo termine in una sequenza geometrica è 12. Il quarto termine nella stessa sequenza è 413. Qual è il rapporto comune in questa sequenza?

Rapporto comune r = sqrt (413/12) Secondo termine ar = 12 Quarto termine ar ^ 3 = 413 Rapporto comune r = {ar ^ 3} / {ar} r = sqrt (413/12)