Risposta:
Ci sono infinitamente molte di queste linee. Vedi la spiegazione.
Spiegazione:
Ci sono infinitamente molte linee perpendicolari a una data linea (qui
Qualsiasi linea in un modulo
Senza ulteriori informazioni (come un punto appartenente alla linea perpendicolare) è possibile solo una risposta generale.
La linea n passa attraverso i punti (6,5) e (0, 1). Qual è l'intercetta y della linea k, se la linea k è perpendicolare alla linea n e passa attraverso il punto (2,4)?
7 è l'intercetta y della linea k Per prima cosa, troviamo la pendenza per la linea n. (1-5) / (0-6) (-4) / - 6 2/3 = m La pendenza della linea n è 2/3. Ciò significa che la pendenza della linea k, che è perpendicolare alla linea n, è il reciproco negativo di 2/3 o -3/2. Quindi l'equazione che abbiamo finora è: y = (- 3/2) x + b Per calcolare b o l'intercetta y, basta inserire (2,4) nell'equazione. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Quindi l'intercetta y è 7
Una linea passa attraverso (8, 1) e (6, 4). Una seconda linea passa attraverso (3, 5). Qual è un altro punto che può passare la seconda linea se è parallela alla prima linea?
(1,7) Quindi dobbiamo prima trovare il vettore di direzione tra (8,1) e (6,4) (6,4) - (8,1) = (- 2,3) Sappiamo che un'equazione vettoriale è costituito da un vettore di posizione e un vettore di direzione. Sappiamo che (3,5) è una posizione sull'equazione del vettore, quindi possiamo usarlo come nostro vettore posizione e sappiamo che è parallelo l'altra linea in modo che possiamo usare quel vettore di direzione (x, y) = (3, 4) + s (-2,3) Per trovare un altro punto sulla linea basta sostituire qualsiasi numero in s tranne 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Quindi (1,7) è un altro punto.
Una linea passa attraverso i punti (2,1) e (5,7). Un'altra linea passa attraverso i punti (-3,8) e (8,3). Le linee sono parallele, perpendicolari o nessuna delle due?
Né parallele o perpendicolari Se il gradiente di ogni linea è lo stesso, allora sono paralleli. Se il gradiente di è l'inverso negativo dell'altro, allora sono perpendicolari tra loro. Cioè: uno è m "e l'altro è" -1 / m Lasciamo la linea 1 L_1 Lasciamo la linea 2 L_2 Lasciate che il gradiente della linea 1 sia m_1 Lasciate che il gradiente della linea 2 sia m_2 "gradiente" = ("Cambia y -assieme ") / (" Modifica nell'asse x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ....