Se nominiamo i tre lati come
Usando la proprietà delle proporzioni (che sta usando prima del composto e dell'inversione di termini):
o:
o:
Le lunghezze dei lati di un triangolo sono nel rapporto esteso 6: 7: 9, il perimetro del triangolo è di 88 cm, quali sono le lunghezze dei lati?
I lati del triangolo sono: 24 cm, 28 cm e 36 cm Le razioni di lunghezze sono: 6: 7: 9 Lasciate che i lati siano denotati come: 6x, 7x e 9x Il perimetro = 88 cm 6x + 7x + 9x = 88 22x = 88 x = 88/22 x = 4 I lati si possono trovare come segue: 6x = 6 xx 4 = 24 cm 7x = 7 xx 4 = 28 cm 9x = 9 xx 4 = 36 cm
Il perimetro di un triangolo è di 24 pollici. Il lato più lungo di 4 pollici è più lungo del lato più corto e il lato più corto è tre quarti della lunghezza del lato centrale. Come trovi la lunghezza di ciascun lato del triangolo?
Bene, questo problema è semplicemente impossibile. Se il lato più lungo è di 4 pollici, non c'è modo che il perimetro di un triangolo possa essere di 24 pollici. Stai dicendo che 4 + (qualcosa di meno di 4) + (qualcosa di meno di 4) = 24, che è impossibile.
Il perimetro di un triangolo è 29 mm. La lunghezza del primo lato è il doppio della lunghezza del secondo lato. La lunghezza del terzo lato è 5 in più rispetto alla lunghezza del secondo lato. Come trovi le lunghezze laterali del triangolo?
S_1 = 12 s_2 = 6 s_3 = 11 Il perimetro di un triangolo è la somma delle lunghezze di tutti i suoi lati. In questo caso, è dato che il perimetro è 29 mm. Quindi per questo caso: s_1 + s_2 + s_3 = 29 Quindi, risolvendo per la lunghezza dei lati, traduciamo le istruzioni nella forma data in equazione. "La lunghezza del 1 ° lato è il doppio della lunghezza del 2 ° lato" Per risolvere questo problema, assegniamo una variabile casuale a s_1 o s_2. Per questo esempio, vorrei che x sia la lunghezza del 2 ° lato per evitare di avere frazioni nella mia equazione. quindi sappiamo che: s_1