Risposta:
Prova di seguito
Spiegazione:
Espansione di
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Sia f (x) = x-1. 1) Verifica che f (x) non sia né pari né dispari. 2) Can f (x) può essere scritto come somma di una funzione pari e di una funzione dispari? a) Se è così, mostra una soluzione. Ci sono più soluzioni? b) In caso contrario, dimostrare che è impossibile.
Sia f (x) = | x -1 |. Se f fosse pari, allora f (-x) sarebbe uguale a f (x) per tutti x. Se f fosse dispari, allora f (-x) sarebbe uguale a -f (x) per tutti x. Osservare che per x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Poiché 0 non è uguale a 2 o a -2, f non è né pari né dispari. Potrebbe essere scritto come g (x) + h (x), dove g è pari eh è dispari? Se fosse vero allora g (x) + h (x) = | x - 1 |. Chiama questa affermazione 1. Sostituisci x di -x. g (-x) + h (-x) = | -x - 1 | Poiché g è pari ed è dispari, abbiamo: g (x) - h (x) = | -x - 1 | Chiama questa affermazione 2.
Come verifica 1/8 [3 + 4cos2x + cos4x] = cos ^ 4x?
RHS = cos ^ 4x = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 2 / (4 * 2) [1 + 2cos2x + cos ^ 2 (2x)] = 1 / 8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x] = LHS