Risposta:
L'unico asintoto è a
Spiegazione:
Per scoprire dove sono gli asintoti di una funzione razionale, prendi il denominatore, impostalo su 0, quindi risolvi
Per rappresentare graficamente la funzione, in primo luogo, disegna l'asintoto su
Gli zeri di una funzione f (x) sono 3 e 4, mentre gli zeri di una seconda funzione g (x) sono 3 e 7. Quali sono lo zero (s) della funzione y = f (x) / g (x )?
Solo zero di y = f (x) / g (x) è 4. Poiché gli zeri di una funzione f (x) sono 3 e 4, questo significa (x-3) e (x-4) sono fattori di f (x ). Inoltre, gli zeri di una seconda funzione g (x) sono 3 e 7, che significa (x-3) e (x-7) sono fattori di f (x). Ciò significa nella funzione y = f (x) / g (x), sebbene (x-3) debba cancellare il denominatore g (x) = 0 non è definito, quando x = 3. Inoltre, non è definito quando x = 7. Quindi, abbiamo un buco in x = 3. e solo zero di y = f (x) / g (x) è 4.
Quali sono gli asintoti per y = 2 / (x + 1) -5 e come grafici la funzione?
Y ha un asintoto verticale a x = -1 e un asintoto orizzontale a y = -5 Vedi grafico sotto y = 2 / (x + 1) -5 y è definito per tutto il reale x tranne dove x = -1 perché 2 / ( x + 1) non è definito in x = -1 NB Questo può essere scritto come: y è definito per tutto x in RR: x! = - 1 Consideriamo cosa succede a y quando x si avvicina a -1 dal basso e dall'alto. lim_ (x -> - 1 ^ -) 2 / (x + 1) -5 = -oo e lim_ (x -> - 1 ^ +) 2 / (x + 1) -5 = + oo Quindi, y ha un asintoto verticale a x = -1 Ora vediamo cosa succede come x-> + -oo lim_ (x -> + oo) 2 / (x + 1) -5 = 0-5 = -5 e lim_ (x ->
Quali sono gli asintoti per y = 3 / (x-1) +2 e come grafici la funzione?
Vertical Asymptote is at color (blue) (x = 1 Horizontal Asymptote is at color (blue) (y = 2 Il grafico della funzione razionale è disponibile con questa soluzione Ci viene dato il colore della funzione razionale (verde) (f (x) = [3 / (x-1)] + 2 Semplificheremo e riscrivere f (x) come rArr [3 + 2 (x-1)] / (x-1) rArr [3 + 2x-2] / (x -1) rArr [2x + 1] / (x-1) Quindi, colore (rosso) (f (x) = [2x + 1] / (x-1)) Asymptote verticale Imposta il denominatore su Zero. get (x-1) = 0 rArr x = 1 Quindi, Asymptote verticale è a colori (blu) (x = 1 Asymptote orizzontale Dobbiamo confrontare i gradi del numeratore e denominatore