Risposta:
Spiegazione:
Abbiamo bisogno di scrivere un'equazione. Permettere
Rompa la frase in parti
Due volte un numero significa
"26 meno di" significa sottrarre 26 da qualcosa.
"IS" indica quale deve essere la risposta, questo è il
Due volte un numero meno un secondo numero è -1. Due volte il secondo numero aggiunto a tre volte il primo numero è 9. Come trovi i due numeri?
Il primo numero è 1 e il secondo numero è 3. Consideriamo il primo numero come x e il secondo come y. Dai dati, possiamo scrivere due equazioni: 2x-y = -1 3x + 2y = 9 Dalla prima equazione, deriviamo un valore per y. 2x-y = -1 Aggiungi y a entrambi i lati. 2x = -1 + y Aggiungi 1 a entrambi i lati. 2x + 1 = yoy = 2x + 1 Nella seconda equazione, sostituisci y con il colore (rosso) ((2x + 1)). 3x + 2colore (rosso) ((2x + 1)) = 9 Apri le parentesi e semplifica. 3x + 4x + 2 = 9 7x + 2 = 9 Sottrai 2 da entrambi i lati. 7x = 7 Dividi entrambi i lati di 7. x = 1 Nella prima equazione, sostituisci x con colore (rosso) 1.
Due volte un numero meno un secondo numero è -1. Due volte il secondo numero aggiunto a tre volte il primo numero è 9. Quali sono i due numeri?
(x, y) = (1,3) Abbiamo due numeri che chiamerò xey. La prima frase dice "Due volte un numero meno un secondo numero è -1" e posso scriverlo come: 2x-y = -1 La seconda frase dice "Due volte il secondo numero aggiunto a tre volte il primo numero è 9" che io posso scrivere come: 2y + 3x = 9 Notiamo che entrambe queste istruzioni sono linee e se c'è una soluzione che possiamo risolvere, il punto in cui queste due linee si intersecano è la nostra soluzione. Scopriamolo: ho intenzione di riscrivere la prima equazione da risolvere per y, quindi sostituirla nella seconda equazione.
Due volte un numero più tre volte un altro numero equivale a 4. Tre volte il primo numero più quattro volte l'altro numero è 7. Quali sono i numeri?
Il primo numero è 5 e il secondo è -2. Sia x il primo numero e y il secondo. Quindi abbiamo {(2x + 3y = 4), (3x + 4y = 7):} Possiamo usare qualsiasi metodo per risolvere questo sistema. Ad esempio, per eliminazione: in primo luogo, eliminando x sottraendo un multiplo della seconda equazione dalla prima, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 quindi sostituendo il risultato nella prima equazione, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Quindi il primo numero è 5 e il secondo è -2. Il controllo inserendo questi dati conferma il risultato.