Risposta:
Lunghezza = 7 piedi e larghezza = 2 piedi
Spiegazione:
Sia l il lengty eb la larghezza del rctangle.
La lunghezza di un rettangolo è 4 meno del doppio della larghezza. l'area del rettangolo è di 70 piedi quadrati. trova la larghezza, w, del rettangolo algebricamente. spiegare perché una delle soluzioni per w non è praticabile. ?
Una risposta risulta negativa e la lunghezza non può mai essere 0 o inferiore. Sia w = "width" Sia 2w - 4 = "length" "Area" = ("length") ("width") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 So w = 7 o w = -5 w = -5 non è fattibile perché le misurazioni devono essere sopra lo zero.
La lunghezza di un rettangolo è 7 piedi più grande della larghezza. Il perimetro del rettangolo è di 26 piedi. Come si scrive un'equazione per rappresentare il perimetro in termini di larghezza (w). Qual è la lunghezza?
Un'equazione per rappresentare il perimetro in termini di larghezza è: p = 4w + 14 e la lunghezza del rettangolo è di 10 piedi. Lascia che la larghezza del rettangolo sia w. Lascia che la lunghezza del rettangolo sia l. Se la lunghezza (l) è 7 piedi più lunga della larghezza, la lunghezza può essere scritta in termini di larghezza come: l = w + 7 La formula per il perimetro di un rettangolo è: p = 2l + 2w dove p è il perimetro, l è la lunghezza e w è la larghezza. Sostituendo w + 7 per l si ottiene un'equazione per rappresentare il perimetro in termini di larghezza: p =
Qual è il tasso di variazione della larghezza (in ft / sec) quando l'altezza è di 10 piedi, se l'altezza diminuisce in quel momento al ritmo di 1 ft / sec. Un rettangolo ha un'altezza variabile e una larghezza variabile , ma l'altezza e la larghezza cambiano in modo che l'area del rettangolo sia sempre di 60 piedi quadrati?
La velocità di variazione della larghezza con il tempo (dW) / (dt) = 0.6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Quindi (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Quindi (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Quindi quando h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"