Risposta:
Spiegazione:
Risposta:
Spiegazione:
Ecco un altro soluzione, usando il Identità:
Lo sappiamo,
Risolvi (2 + sqrt3) cos theta = 1-sin theta?
Rarrx = (6n-1) * (pi / 3) rarrx = (4n + 1) pi / 2 Dove nrarrZ rarr (2 + sqrt (3)) cosx = 1-sinx rarrtan75 ^ @ * cosx + sinx = 1 rarr ( sin75 ^ @ * cosx) / (cos75 ^ @) + sinx = 1 rarrsinx * cos75 ^ @ + cosx * sin75 ^ @ = cos75 ^ @ = sin (90 ^ @ - 15 ^ @) = sin15 ^ @ rarrsin (x + 75 ^ @) - sin15 ^ @ = 0 rarr2sin ((x + 75 ^ @ - 15 ^ @) / 2) cos ((x + 75 ^ @ + 15 ^ @) / 2) = 0 rarrsin ((x + 60 ^ @) / 2) * cos ((x + 90 ^ @) / 2) = 0 Rarrsin ((x + 60 ^ @) / 2) = 0 rarr (x + 60 ^ @) / 2 = npi rarrx = 2npi-60 ^ @ = 2npi-pi / 3 = (6n-1) * (pi / 3) o, cos ((x + 90 ^ @) / 2) = 0 rarr (x + 90 ^ @) / 2 = (2n + 1) pi / 2 rarrx = 2 * (2n
Risolvi algebricamente? cos (x-Pi / 4) + cos (x + pi / 4) = 1 per 0 x 2pi
X = pi / 4 o x = {7pi} / 4 cos (x-pi / 4) + cos (x + pi / 4) = 1 Espanderemo con la differenza e le formule dell'angolo di somma e vediamo dove siamo. cos x cos (pi / 4) + sin x sin (pi / 4) + cos x cos (pi / 4) - sin x sin (pi / 4) = 1 2 cos x cos (pi / 4) = 1 2 cos x (sqrt {2} / 2) = 1 cos x = 1 / sqrt {2} Cioè 45/45/90 nel primo e nel quarto quadrante, x = pi / 4 o x = {7pi} / 4 Controllo: cos 0 + cos (pi / 2) = 1 + 0 = 1 quad sqrt cos ({6pi} / 4) + cos ({8pi} / 4) = 0 + 1 = 1 quad sqrt
1.cos ^ 2 (π / 24) + cos ^ 2 ((19π) / 24) + cos ^ 2 ((31π) / 24) + cos ^ 2 ((37π) / 24) =? risolvi questo
Cos ^ 2 (π / 24) + cos ^ 2 ({19π} / 24) + cos ^ 2 ({31π} / 24) + cos ^ 2 ({37π} / 24) = 2 Divertimento. Non so come farlo a mano libera, quindi proveremo solo alcune cose. Non sembrano esserci angoli complementari o supplementari ovviamente in gioco, quindi forse la nostra mossa migliore è iniziare con la formula del doppio angolo. cos 2 theta = 2 cos ^ 2 theta - 1 cos ^ 2 theta = 1/2 (1 + cos 2 theta) cos ^ 2 (π / 24) + cos ^ 2 ({19π} / 24) + cos ^ 2 ({31π} / 24) + cos ^ 2 ({37π} / 24) = 4 (1/2) + 1/2 (cos (pi / 12) + cos ({19 pi} / 12) + cos ({ 31 pi} / 12) + cos ({37 pi} / 12)) Ora sostituiamo gli angoli con quelli