Sappiamo che nel punto più alto del suo movimento un proiettile ha solo la sua componente orizzontale di velocità, cioè
Quindi, dopo la rottura, una parte può tornare sul suo percorso se avrà la stessa velocità dopo la collisione nella direzione opposta.
Quindi, applicando la legge di conservazione della quantità di moto, Lo slancio iniziale era
Dopo che il momento di collusione divenne,
Quindi, equiparando otteniamo,
o,
La velocità di una particella che si muove lungo l'asse x è data come v = x ^ 2 - 5x + 4 (in m / s), dove x indica la coordinata x della particella in metri. Trova l'entità dell'accelerazione della particella quando la velocità della particella è zero?
A Velocità data v = x ^ 2-5x + 4 Accelerazione a - = (dv) / dt: .a = d / dt (x ^ 2-5x + 4) => a = (2x (dx) / dt-5 (dx) / dt) Sappiamo anche che (dx) / dt- = v => a = (2x -5) v a v = 0 sopra l'equazione diventa a = 0
L'acqua esce da una vasca conica rovesciata ad una velocità di 10.000 cm3 / min, allo stesso tempo l'acqua viene pompata nel serbatoio ad una velocità costante Se il serbatoio ha un'altezza di 6 metri e il diametro nella parte superiore è 4 metri e se il livello dell'acqua aumenta di 20 cm / min quando l'altezza dell'acqua è di 2 metri, come si trova la velocità con cui viene pompata l'acqua nel serbatoio?
Sia V il volume d'acqua nel serbatoio, in cm ^ 3; sia la profondità / altezza dell'acqua, in cm; e sia r il raggio della superficie dell'acqua (in alto), in cm. Poiché il serbatoio è un cono invertito, lo è anche la massa d'acqua. Dato che il serbatoio ha un'altezza di 6 me un raggio nella parte superiore di 2 m, triangoli simili implicano che frac {h} {r} = frac {6} {2} = 3 in modo che h = 3r. Il volume del cono invertito dell'acqua è quindi V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Ora differenziate entrambi i lati rispetto al tempo t (in minuti) per ottenere frac {dV} {
Una particella viene proiettata da terra con una velocità di 80 m / s ad un angolo di 30 ° con orizzontale da terra. Qual è l'entità della velocità media della particella nell'intervallo di tempo t = 2s to t = 6s?
Vediamo il tempo impiegato dalla particella per raggiungere l'altezza massima, è, t = (u sin theta) / g Dato, u = 80ms ^ -1, theta = 30 così, t = 4,07 s Ciò significa che a 6s è già iniziato verso il basso. Quindi, lo spostamento verso l'alto in 2s è, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m e lo spostamento in 6s è s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Quindi, il dislocamento verticale in (6-2) = 4s è (63.6-60.4) = 3.2m E lo spostamento orizzontale in (6-2) = 4s è (u cos theta * 4) = 277.13m Quindi, lo spostamento netto è 4s è sqrt (3.2 ^ 2 + 277.