Risposta:
Spiegazione:
# "calcola la pendenza (m) tra i 2 punti" (0, -2) "#
# "e" (2, -3) "usando la formula del gradiente" colore (blu) "#
# • m = (y_2-y_1) / (x_2-x_1) #
# "dove" (x_1, y_1), (x_2, y_2) "sono 2 punti" #
# "i 2 punti sono" (x_1, y_1) = (0, -2), (x_2, y_2) = (2, -3) #
#rArrm = (- 3 - (- 2)) / (2-0) = - 1/2 #
# "quindi la pendenza tra SR sarà anche" -1 / 2 #
# "utilizzando la formula del gradiente sui punti S e R" #
#rArrm = (- 60 - (- 3)) / (x-2) = - 1/2 #
#rArr (-57) / (x-2) = - 1/2 #
# "cross-multiply allegando il - a 1 o 2" #
# "ma non entrambi" #
# RArrx-2 = (- 2xx-57) = 114 #
# "aggiungi 2 su entrambi i lati" #
#xcancel (-2) cancel (2) = 114 + 2 #
# RArrx = 116" #
La linea n passa attraverso i punti (6,5) e (0, 1). Qual è l'intercetta y della linea k, se la linea k è perpendicolare alla linea n e passa attraverso il punto (2,4)?
7 è l'intercetta y della linea k Per prima cosa, troviamo la pendenza per la linea n. (1-5) / (0-6) (-4) / - 6 2/3 = m La pendenza della linea n è 2/3. Ciò significa che la pendenza della linea k, che è perpendicolare alla linea n, è il reciproco negativo di 2/3 o -3/2. Quindi l'equazione che abbiamo finora è: y = (- 3/2) x + b Per calcolare b o l'intercetta y, basta inserire (2,4) nell'equazione. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Quindi l'intercetta y è 7
Una linea passa attraverso i punti (2,1) e (5,7). Un'altra linea passa attraverso i punti (-3,8) e (8,3). Le linee sono parallele, perpendicolari o nessuna delle due?
Né parallele o perpendicolari Se il gradiente di ogni linea è lo stesso, allora sono paralleli. Se il gradiente di è l'inverso negativo dell'altro, allora sono perpendicolari tra loro. Cioè: uno è m "e l'altro è" -1 / m Lasciamo la linea 1 L_1 Lasciamo la linea 2 L_2 Lasciate che il gradiente della linea 1 sia m_1 Lasciate che il gradiente della linea 2 sia m_2 "gradiente" = ("Cambia y -assieme ") / (" Modifica nell'asse x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ....
Dimostra che data una linea e un punto non su quella linea, c'è esattamente una linea che passa attraverso quel punto perpendicolare attraverso quella linea? Puoi farlo matematicamente o attraverso la costruzione (gli antichi greci fecero)?
Vedi sotto. Supponiamo che la linea data sia AB e che il punto sia P, che non è su AB. Ora, supponiamo, abbiamo disegnato una PO perpendicolare su AB. Dobbiamo dimostrare che, Questo PO è l'unica linea che passa per P che è perpendicolare a AB. Ora, useremo una costruzione. Costruiamo un altro PC perpendicolare su AB dal punto P. Now The Proof. Abbiamo, OP perpendicolare AB [Non posso usare il segno perpendicolare, come annyoing] E, inoltre, PC perpendicolare AB. Quindi, OP || PC. [Entrambi sono perpendicolari sulla stessa linea.] Ora sia l'OP che il PC hanno il punto P in comune e sono paralleli. Ci