Gli zeri di una funzione f (x) sono 3 e 4, mentre gli zeri di una seconda funzione g (x) sono 3 e 7. Quali sono lo zero (s) della funzione y = f (x) / g (x )?
Solo zero di y = f (x) / g (x) è 4. Poiché gli zeri di una funzione f (x) sono 3 e 4, questo significa (x-3) e (x-4) sono fattori di f (x ). Inoltre, gli zeri di una seconda funzione g (x) sono 3 e 7, che significa (x-3) e (x-7) sono fattori di f (x). Ciò significa nella funzione y = f (x) / g (x), sebbene (x-3) debba cancellare il denominatore g (x) = 0 non è definito, quando x = 3. Inoltre, non è definito quando x = 7. Quindi, abbiamo un buco in x = 3. e solo zero di y = f (x) / g (x) è 4.
Quali sono tutti gli zeri della funzione f (x) = x ^ 2-169?
Gli zeri di f (x) sono + - 13 let f (x) = 0 x ^ 2 - 169 = 0 x ^ 2 = 169 prendi radice quadrata di entrambi i lati sqrtx ^ 2 = + - sqrt169 x = + -13 quindi Gli zeri di f (x) sono + -13
Perché così tante persone hanno l'impressione che abbiamo bisogno di trovare il dominio di una funzione razionale per trovare i suoi zeri? Gli zeri di f (x) = (x ^ 2-x) / (3x ^ 4 + 4x ^ 3-7x + 9) sono 0,1.
Penso che trovare il dominio di una funzione razionale non sia necessariamente collegato alla ricerca delle sue radici / zeri. Trovare il dominio significa semplicemente trovare le precondizioni per la semplice esistenza della funzione razionale. In altre parole, prima di trovare le sue radici, dobbiamo assicurarci a quali condizioni esista la funzione. Potrebbe sembrare pedante farlo, ma ci sono casi particolari quando ciò è importante.