l'equazione della linea può essere riscritta come
Sostituendo il valore di x nell'equazione della curva,
permettere
Poiché la linea si interseca in due punti diversi, il discriminante dell'equazione precedente deve essere maggiore di zero.
La gamma di
perciò,
Aggiungendo 2 a entrambi i lati,
Se la linea deve essere tangente, la discriminante deve essere zero, perché tocca solo la curva in un punto,
Quindi, i valori di
La somma di cinque numeri è -1/4. I numeri includono due coppie di opposti. Il quoziente di due valori è 2. Il quoziente di due valori diversi è -3/4 Quali sono i valori ??
Se la coppia il cui quoziente è 2 è unica, allora ci sono quattro possibilità ... Ci viene detto che i cinque numeri includono due coppie di opposti, quindi possiamo chiamarli: a, -a, b, -b, c e senza perdita di generalità lascia a> = 0 eb> = 0. La somma dei numeri è -1/4, quindi: -1/4 = colore (rosso) (cancella (colore (nero) (a))) + ( colore (rosso) (annullare (colore (nero) (- a)))) + colore (rosso) (annullare (colore (nero) (b))) + (colore (rosso) (annullare (colore (nero) (- b)))) + c = c Ci viene detto che il quoziente di due valori è 2. Interpretiamo quell'istruzione per indic
Come trovi tutti i punti sulla curva x ^ 2 + xy + y ^ 2 = 7 dove la linea tangente è parallela all'asse xe il punto in cui la linea tangente è parallela all'asse y?
La linea tangente è parallela all'asse x quando la pendenza (quindi dy / dx) è zero ed è parallela all'asse y quando la pendenza (di nuovo, dy / dx) passa a oo o -oo Inizieremo trovando dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Ora, dy / dx = 0 quando il nuimeratore è 0, a condizione che questo non faccia anche il denominatore 0. 2x + y = 0 quando y = -2x Abbiamo ora due equazioni: x ^ 2 + xy + y ^ 2 = 7 y = -2x Solve (per sostituzione) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x
Una curva è definita da eqn parametrico x = t ^ 2 + t - 1 ey = 2t ^ 2 - t + 2 per tutto t. i) mostra che A (-1, 5_ giace sulla curva ii) trova dy / dx. iii) trova eqn di tangente alla curva sul pt. A. ?
Abbiamo l'equazione parametrica {(x = t ^ 2 + t-1), (y = 2t ^ 2-t + 2):}. Per mostrare che (-1,5) giace sulla curva definita sopra, dobbiamo mostrare che esiste un certo t_A tale che at = = A, x = -1, y = 5. Quindi, {(-1 = t_A ^ 2 + t_A-1), (5 = 2t_A ^ 2-t_A + 2):}. Risolvere l'equazione superiore rivela che t_A = 0 "o" -1. Risolvere il fondo rivela che t_A = 3/2 "o" -1. Quindi, a t = -1, x = -1, y = 5; e quindi (-1,5) si trova sulla curva. Per trovare la pendenza in A = (- 1,5), per prima cosa troviamo ("d" y) / ("d" x). Dalla regola della catena ("d" y) / ("d