Sia il 1 ° termine e il rapporto comune di GP
Alla 1a condizione
Alla seconda condizione
Sottraendo (2) da (1)
Dividere (2) per (3)
Così
Il primo e il secondo termine di una sequenza geometrica sono rispettivamente il primo e il terzo termine di una sequenza lineare. Il quarto termine della sequenza lineare è 10 e la somma dei suoi primi cinque termini è 60 Trova i primi cinque termini della sequenza lineare?
{16, 14, 12, 10, 8} Una tipica sequenza geometrica può essere rappresentata come c_0a, c_0a ^ 2, cdots, c_0a ^ k e una tipica sequenza aritmetica come c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chiamando c_0 a come primo elemento per la sequenza geometrica abbiamo {(c_0 a ^ 2 = c_0a + 2Delta -> "Primo e secondo di GS sono il primo e il terzo di un LS"), (c_0a + 3Delta = 10- > "Il quarto termine della sequenza lineare è 10"), (5c_0a + 10Delta = 60 -> "La somma dei suoi primi cinque termini è 60"):} Risoluzione per c_0, a, Delta otteniamo c_0 = 64/3 , a = 3/4
La somma dei primi quattro termini di un GP è 30 e quella degli ultimi quattro termini è 960. Se il primo e l'ultimo termine del GP sono rispettivamente 2 e 512, trova il rapporto comune.
2root (3) 2. Supponiamo che il rapporto comune (cr) del GP in questione sia r e n ^ (th) termine sia l'ultimo termine. Dato che, il primo termine del GP è 2.:. "Il GP è" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Dato, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (stella ^ 1), e, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (stella ^ 2). Sappiamo anche che l'ultimo termine è 512.:. r ^ (n-1) = 512 .................... (stella ^ 3). Ora, (stella ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, cioè, (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3)
Il primo termine di una sequenza geometrica è 200 e la somma dei primi quattro termini è 324,8. Come trovi il rapporto comune?
La somma di qualsiasi sequenza geometrica è: s = a (1-r ^ n) / (1-r) s = somma, a = termine iniziale, r = rapporto comune, n = numero di termine ... Ci vengono dati s, a, e n, quindi ... 324.8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1.624) otteniamo .. .5, .388, .399, .39999999, .3999999999999999 Quindi il limite sarà .4 o 4/10 Quindi il vostro rapporto comune è 4/10 controllo ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324.8