
La somma di qualsiasi sequenza geometrica è:
s =
s = somma, a = termine iniziale, r = rapporto comune, n = numero termine …
Ci vengono dati s, a e n, quindi …
Quindi il limite sarà
dai un'occhiata…
Il primo e il secondo termine di una sequenza geometrica sono rispettivamente il primo e il terzo termine di una sequenza lineare. Il quarto termine della sequenza lineare è 10 e la somma dei suoi primi cinque termini è 60 Trova i primi cinque termini della sequenza lineare?

{16, 14, 12, 10, 8} Una tipica sequenza geometrica può essere rappresentata come c_0a, c_0a ^ 2, cdots, c_0a ^ k e una tipica sequenza aritmetica come c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chiamando c_0 a come primo elemento per la sequenza geometrica abbiamo {(c_0 a ^ 2 = c_0a + 2Delta -> "Primo e secondo di GS sono il primo e il terzo di un LS"), (c_0a + 3Delta = 10- > "Il quarto termine della sequenza lineare è 10"), (5c_0a + 10Delta = 60 -> "La somma dei suoi primi cinque termini è 60"):} Risoluzione per c_0, a, Delta otteniamo c_0 = 64/3 , a = 3/4
La somma dei primi quattro termini di un GP è 30 e quella degli ultimi quattro termini è 960. Se il primo e l'ultimo termine del GP sono rispettivamente 2 e 512, trova il rapporto comune.

2root (3) 2. Supponiamo che il rapporto comune (cr) del GP in questione sia r e n ^ (th) termine sia l'ultimo termine. Dato che, il primo termine del GP è 2.:. "Il GP è" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Dato, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (stella ^ 1), e, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (stella ^ 2). Sappiamo anche che l'ultimo termine è 512.:. r ^ (n-1) = 512 .................... (stella ^ 3). Ora, (stella ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, cioè, (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3)
Il primo termine di una sequenza geometrica è 4 e il moltiplicatore o il rapporto è -2. Qual è la somma dei primi 5 termini della sequenza?

Primo termine = a_1 = 4, rapporto comune = r = -2 e numero di termini = n = 5 Somma delle serie geometriche fino a n tem è data da S_n = (a_1 (1-r ^ n)) / (1-r ) Dove S_n è la somma di n termini, n è il numero di termini, a_1 è il primo termine, r è il rapporto comune. Qui a_1 = 4, n = 5 e r = -2 implica S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Quindi, la somma è 44