Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Se sin theta + cos theta = p, qual è il peccato ^ 2 theta + cos ^ 4theta in termini di p?
1 - ((p ^ 2-1) / 2) ^ 2 (sintheta + costheta) ^ 2 = 1 + 2sinthetacostheta = p ^ 2 quindi sinthetacostheta = (p ^ 2-1) / 2 ora sin ^ 2theta + cos ^ 4theta = sin ^ 2theta + (1-sin ^ 2theta) cos ^ 2theta = 1-sin ^ 2thetacos ^ 2theta e mettendo tutti insieme sin ^ 2theta + cos ^ 4theta = 1 - ((p ^ 2-1) / 2) ^ 2
Dimostra che Culla 4x (peccato 5 x + peccato 3 x) = Culla x (peccato 5 x - peccato 3 x)?
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) Lato destro: lettino x (sin 5x - sin 3x) = lettino x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Lato sinistro: lettino (4x) (sin 5x + sin 3x) = lettino (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x Sono uguali quad sqrt #