Risposta:
Come sotto
Spiegazione:
Identità del quoziente. Esistono due identità quozienti che possono essere utilizzate nella trigonometria del triangolo destro.
Un'identità quoziente definisce le relazioni per tangente e cotangente in termini di seno e coseno. …
.
Ricorda che la differenza tra un'equazione e un'identità è che un'identità sarà vera per TUTTI i valori.
Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La somma di cinque numeri è -1/4. I numeri includono due coppie di opposti. Il quoziente di due valori è 2. Il quoziente di due valori diversi è -3/4 Quali sono i valori ??
Se la coppia il cui quoziente è 2 è unica, allora ci sono quattro possibilità ... Ci viene detto che i cinque numeri includono due coppie di opposti, quindi possiamo chiamarli: a, -a, b, -b, c e senza perdita di generalità lascia a> = 0 eb> = 0. La somma dei numeri è -1/4, quindi: -1/4 = colore (rosso) (cancella (colore (nero) (a))) + ( colore (rosso) (annullare (colore (nero) (- a)))) + colore (rosso) (annullare (colore (nero) (b))) + (colore (rosso) (annullare (colore (nero) (- b)))) + c = c Ci viene detto che il quoziente di due valori è 2. Interpretiamo quell'istruzione per indic
Gli zeri di una funzione f (x) sono 3 e 4, mentre gli zeri di una seconda funzione g (x) sono 3 e 7. Quali sono lo zero (s) della funzione y = f (x) / g (x )?
Solo zero di y = f (x) / g (x) è 4. Poiché gli zeri di una funzione f (x) sono 3 e 4, questo significa (x-3) e (x-4) sono fattori di f (x ). Inoltre, gli zeri di una seconda funzione g (x) sono 3 e 7, che significa (x-3) e (x-7) sono fattori di f (x). Ciò significa nella funzione y = f (x) / g (x), sebbene (x-3) debba cancellare il denominatore g (x) = 0 non è definito, quando x = 3. Inoltre, non è definito quando x = 7. Quindi, abbiamo un buco in x = 3. e solo zero di y = f (x) / g (x) è 4.