Come trovi il volume della piramide delimitato dall'aereo 2x + 3y + z = 6 e il piano delle coordinate?

Come trovi il volume della piramide delimitato dall'aereo 2x + 3y + z = 6 e il piano delle coordinate?
Anonim

Risposta:

#= 6 # unità cubiche

Spiegazione:

il vettore normale è #((2),(3),(1))# che indica nella direzione dell'ottante 1, quindi il volume in questione si trova sotto il piano e nell'ottante 1

possiamo riscrivere l'aereo come #z (x, y) = 6 - 2x - 3y #

per #z = 0 # noi abbiamo

  • # z = 0, x = 0 implica y = 2 #
  • # z = 0, y = 0 implica x = 3 #

e

- - # x = 0, y = 0 implica z = 6 #

è questo:

il volume di cui abbiamo bisogno è

#int_A z (x, y) dA #

# = int_ (x = 0) ^ (3) int_ (y = 0) ^ (2 - 2/3 x) 6 - 2x - 3y dy dx #

# = int_ (x = 0) ^ (3) 6y - 2xy - 3 / 2y ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #

# = int_ (x = 0) ^ (3) 6 (2-2 / 3 x) - 2x (2-2 / 3 x) - 3/2 (2-2 / 3 x) ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #

# = int_ (x = 0) ^ (3) 12-4 x - 4x + 4/3 x ^ 2 - 6 - 2/3 x ^ 2 + 4x dx #

# = int_ (x = 0) ^ (3) 6- 4 x + 2/3 x ^ 2 dx #

# = 6x- 2 x ^ 2 + 2/9 x ^ 3 _ (x = 0) ^ (3) #

#= 18- 18 + 54/9 #

#= 6 #

Risposta:

6

Spiegazione:

Stiamo per eseguire un triplo integrale.

Il sistema di coordinate cartesiane è il più applicabile. L'ordine di integrazione non è critico. Andremo z prima, y centrale, x ultima.

#underline ("Determinazione dei limiti") #

Sull'aereo #z = 6 - 2x - 3y # e sul piano di coordinate #z = 0 # quindi

# z: 0 rarr 6 - 2x - 3y #

Lungo # Z = 0 #, # Y # va da 0 a # 3y = 6 - 2x # quindi

#y: 0 rarr 2 - 2 / 3x #

Lungo # y = 0, z = 0 # quindi

#x: 0 rarr 3 #

Stiamo trovando il volume così #f (x, y, z) = 1 #. Diventa integrale

# Int_0 ^ 3int_0 ^ (2-2 / 3x) int_0 ^ (6-2x-3 anni) dzdydx #

# = Int_0 ^ 3int_0 ^ (2-2 / 3x) z _0 ^ (6-2x-3 anni) dydx #

# = Int_0 ^ 3int_0 ^ (2-2 / 3x) (6-2x-3 anni) dydx #

# = int_0 ^ 3 6y-2xy - 3 / 2y ^ 2 _0 ^ (2-2 / 3x) dx #

# = int_0 ^ 3 (6 (2-2 / 3x) - 2x (2-2 / 3x) - 3/2 (2-2 / 3x) ^ 2) dx #

# = int_0 ^ 3 (12 - 4x - 4x + 4 / 3x ^ 2 - 3/2 (4 - 8 / 3x + 4 / 9x ^ 2)) dx #

# = int_0 ^ 3 (12 - 8x + 4 / 3x ^ 3 - 6 + 4x - 2 / 3x ^ 2) dx #

# = int_0 ^ 3 (6 - 4x + 2 / 3x ^ 2) dx #

# = 6x - 2x ^ 2 + 2 / 9x ^ 3 _0 ^ 3 #

#=6(3) - 2(3)^2 +2/9(3)^3 #

#=6#