Risposta:
#= 6 # unità cubiche
Spiegazione:
il vettore normale è #((2),(3),(1))# che indica nella direzione dell'ottante 1, quindi il volume in questione si trova sotto il piano e nell'ottante 1
possiamo riscrivere l'aereo come #z (x, y) = 6 - 2x - 3y #
per #z = 0 # noi abbiamo
- # z = 0, x = 0 implica y = 2 #
- # z = 0, y = 0 implica x = 3 #
e
- - # x = 0, y = 0 implica z = 6 #
è questo:
il volume di cui abbiamo bisogno è
#int_A z (x, y) dA #
# = int_ (x = 0) ^ (3) int_ (y = 0) ^ (2 - 2/3 x) 6 - 2x - 3y dy dx #
# = int_ (x = 0) ^ (3) 6y - 2xy - 3 / 2y ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #
# = int_ (x = 0) ^ (3) 6 (2-2 / 3 x) - 2x (2-2 / 3 x) - 3/2 (2-2 / 3 x) ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #
# = int_ (x = 0) ^ (3) 12-4 x - 4x + 4/3 x ^ 2 - 6 - 2/3 x ^ 2 + 4x dx #
# = int_ (x = 0) ^ (3) 6- 4 x + 2/3 x ^ 2 dx #
# = 6x- 2 x ^ 2 + 2/9 x ^ 3 _ (x = 0) ^ (3) #
#= 18- 18 + 54/9 #
#= 6 #
Risposta:
6
Spiegazione:
Stiamo per eseguire un triplo integrale.
Il sistema di coordinate cartesiane è il più applicabile. L'ordine di integrazione non è critico. Andremo z prima, y centrale, x ultima.
#underline ("Determinazione dei limiti") #
Sull'aereo #z = 6 - 2x - 3y # e sul piano di coordinate #z = 0 # quindi
# z: 0 rarr 6 - 2x - 3y #
Lungo # Z = 0 #, # Y # va da 0 a # 3y = 6 - 2x # quindi
#y: 0 rarr 2 - 2 / 3x #
Lungo # y = 0, z = 0 # quindi
#x: 0 rarr 3 #
Stiamo trovando il volume così #f (x, y, z) = 1 #. Diventa integrale
# Int_0 ^ 3int_0 ^ (2-2 / 3x) int_0 ^ (6-2x-3 anni) dzdydx #
# = Int_0 ^ 3int_0 ^ (2-2 / 3x) z _0 ^ (6-2x-3 anni) dydx #
# = Int_0 ^ 3int_0 ^ (2-2 / 3x) (6-2x-3 anni) dydx #
# = int_0 ^ 3 6y-2xy - 3 / 2y ^ 2 _0 ^ (2-2 / 3x) dx #
# = int_0 ^ 3 (6 (2-2 / 3x) - 2x (2-2 / 3x) - 3/2 (2-2 / 3x) ^ 2) dx #
# = int_0 ^ 3 (12 - 4x - 4x + 4 / 3x ^ 2 - 3/2 (4 - 8 / 3x + 4 / 9x ^ 2)) dx #
# = int_0 ^ 3 (12 - 8x + 4 / 3x ^ 3 - 6 + 4x - 2 / 3x ^ 2) dx #
# = int_0 ^ 3 (6 - 4x + 2 / 3x ^ 2) dx #
# = 6x - 2x ^ 2 + 2 / 9x ^ 3 _0 ^ 3 #
#=6(3) - 2(3)^2 +2/9(3)^3 #
#=6#