Risposta:
Tranne quando
Spiegazione:
Osserviamo prima numeratore e denominatore separatamente.
Così
Semplifica (1- cos theta + sin theta) / (1+ cos theta + sin theta)?
= sin (theta) / (1 + cos (theta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) = (1-cos (theta) + sin (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) ^ 2 = ((1 + sin (theta)) ^ 2-cos ^ 2 (theta)) / (1 + cos ^ 2 (theta) + sin ^ 2 (theta) +2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1+ sin (theta)) ^ 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / (2 (1 + cos (theta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / ((1 + cos (theta)) (1 + sin (
Semplifica (-i sqrt 3) ^ 2. come si semplifica questo?
-3 Possiamo scrivere la funzione originale nella sua forma espansa come mostrato (-isqrt (3)) (- isqrt (3)) Trattiamo mi piace una variabile, e dal momento negativo un negativo è uguale a un positivo, e una radice quadrata volte una radice quadrata dello stesso numero è semplicemente quel numero, otteniamo la seguente equazione i ^ 2 * 3 Ricorda che i = sqrt (-1) e operando con la regola della radice quadrata mostrata sopra, possiamo semplificare come mostrato sotto -1 * 3 Ora è una questione di aritmetica -3 E c'è la tua risposta :)
Come si semplifica (cot (theta)) / (csc (theta) - sin (theta))?
= (costheta / sintheta) / (1 / sintheta - sin theta) = (costheta / sintheta) / (1 / sintheta - sin ^ 2theta / sintheta) = (costheta / sintheta) / ((1 - sin ^ 2theta) / sintheta = (costheta / sintheta) / (cos ^ 2theta / sintheta) = costheta / sintheta xx sintheta / cos ^ 2theta = 1 / costheta = sectheta Speriamo che questo aiuti!