Risposta:
Spiegazione:
Per trovare la pendenza, possiamo mettere la nostra equazione in forma di intercetta di pendenza,
Iniziamo sottraendo
Infine, possiamo dividere entrambi i lati
La mia pendenza è data il mio coefficiente su
Spero che questo ti aiuti!
Il grafico della linea l nel piano xy passa attraverso i punti (2,5) e (4,11). Il grafico della linea m ha una pendenza di -2 e una x-intercetta di 2. Se il punto (x, y) è il punto di intersezione delle linee l e m, qual è il valore di y?
Y = 2 Step 1: Determina l'equazione della linea l Abbiamo per la formula della pendenza m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Ora per forma di pendenza del punto l'equazione è y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Step 2: Determina l'equazione della linea m L'intercetta x sarà sempre avere y = 0. Pertanto, il punto dato è (2, 0). Con la pendenza, abbiamo la seguente equazione. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Step 3: Scrivi e risolvi un sistema di equazioni Vogliamo trovare la soluzione del sistema {(y = 3x - 1), (y = -2x + 4):} Per
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
La linea A e la linea B sono parallele. La pendenza della linea A è -2. Qual è il valore di x se la pendenza della Linea B è 3x + 3?
X = -5 / 3 Sia m_A e m_B siano i gradienti delle linee A e B rispettivamente, se A e B sono paralleli, quindi m_A = m_B Quindi, sappiamo che -2 = 3x + 3 Dobbiamo riorganizzare per trovare x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Dimostrazione: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A