Due numeri interi dispari consecutivi hanno una somma di 48, quali sono i due numeri interi dispari?

Due numeri interi dispari consecutivi hanno una somma di 48, quali sono i due numeri interi dispari?
Anonim

Risposta:

23 e 25 insieme aggiungono a 48.

Spiegazione:

Puoi pensare a due interi dispari consecutivi come valore #X# e # x + 2 #. #X# è il più piccolo dei due, e # x + 2 # è 2 in più (1 in più di quanto sarebbe pari). Possiamo ora usarlo in un'equazione di algebra:

# (x) + (x + 2) = 48 #

Consolida lato sinistro:

# 2x + 2 = 48 #

Sottrai 2 da entrambi i lati:

# 2x = 46 #

Dividi entrambi i lati per 2:

# x = 23 #

Ora, sapendo che il numero più piccolo era #X# e # x = 23 #, possiamo collegare #23# in # x + 2 # e prendi #25#.

Un altro modo per risolverlo richiede un po 'di intuizione. Se dividiamo #48# di #2# noi abbiamo #24#, che è pari. Ma se sottraiamo #1# da esso e aggiungere #1# pure, possiamo ottenere i due numeri dispari che ci sono accanto.