Risposta:
Espandi i quadrati, sostituisci
Spiegazione:
Dato:
Ecco un grafico dell'equazione di cui sopra:
Converti in coordinate polari.
Espandi i quadrati:
Raggruppa per potere:
Combina i termini costanti:
Sostituto
Consente di spostare i fattori di r al di fuori di ():
Ci sono due radici,
Risolvi per r:
Ecco il grafico dell'equazione di cui sopra:
Il vettore di posizione di A ha le coordinate cartesiane (20,30,50). Il vettore posizione di B ha le coordinate cartesiane (10,40,90). Quali sono le coordinate del vettore posizione di A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Qual è la formula per convertire le coordinate polari in coordinate rettangolari?
Y = r sin theta, x = r cos theta Coordinate polari a conversione rettangolare: y = r sin theta, x = r cos theta
P è il punto medio del segmento di linea AB. Le coordinate di P sono (5, -6). Le coordinate di A sono (-1,10).Come trovi le coordinate di B?
B = (x_2, y_2) = (11, -22) Se è noto un punto finale (x_1, y_1) e il punto medio (a, b) di un segmento di linea, allora possiamo usare la formula del punto medio per trova il secondo end-point (x_2, y_2). Come utilizzare la formula del punto medio per trovare un endpoint? (x_2, y_2) = (2a-x_1, 2b-y_1) Qui, (x_1, y_1) = (- 1, 10) e (a, b) = (5, -6) Quindi, (x_2, y_2) = (2colore (rosso) ((5)) -colore (rosso) ((-1)), 2colore (rosso) ((- 6)) - colore (rosso) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #