Risposta:
Spiegazione:
Dati:-
Velocità iniziale
Velocità finale
Altezza
Accelerazione dovuta alla forza di gravità
Sol:-
La velocità all'impatto è la velocità della palla quando colpisce la superficie.
Lo sappiamo:-
Quindi, la velocità su Imact è
Una palla con una massa di 5 kg che si muove a 9 m / s colpisce una palla ferma con una massa di 8 kg. Se la prima palla si ferma, quanto velocemente si muove la seconda palla?
La velocità della seconda palla dopo la collisione è = 5,625 ms ^ -1 Abbiamo la conservazione della quantità di moto m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 La massa della prima palla è m_1 = 5kg La velocità della prima palla prima della collisione è u_1 = 9ms ^ -1 La massa della seconda palla è m_2 = 8kg La velocità della seconda palla prima della collisione è u_2 = 0ms ^ -1 La velocità della prima palla dopo la collisione è v_1 = 0ms ^ -1 Pertanto, 5 * 9 + 8 * 0 = 5 * 0 + 8 * v_2 8v_2 = 45 v_2 = 45/8 = 5.625ms ^ -1 La velocità della seconda palla dopo la collisione
Si lancia una palla in aria da un'altezza di 5 piedi, la velocità della palla è di 30 piedi al secondo. Prendi la palla a 6 piedi da terra. Come usi il modello 6 = -16t ^ 2 + 30t + 5 per scoprire per quanto tempo la palla era nell'aria?
T ~~ 1.84 secondi Ci viene chiesto di trovare il tempo totale in cui la palla era in aria. Risolviamo quindi essenzialmente per t nell'equazione 6 = -16t ^ 2 + 30t + 5. Per risolvere per noi riscriviamo l'equazione precedente impostandola a zero perché 0 rappresenta l'altezza. L'altezza zero implica che la palla sia a terra. Possiamo farlo sottraendo 6 da entrambi i lati 6cancel (colore (rosso) (- 6)) = - 16t ^ 2 + 30t + 5colore (rosso) (- 6) 0 = -16t ^ 2 + 30t-1 Da risolvere per t dobbiamo usare la formula quadratica: x = (-b pm sqrt (b ^ 2-4ac)) / (2a) dove a = -16, b = 30, c = -1 So ... t = (- (30)
Una palla con una massa di 9 kg che si muove a 15 m / s colpisce una palla ferma con una massa di 2 kg. Se la prima palla si ferma, quanto velocemente si muove la seconda palla?
V = 67,5 m / s somma P_b = somma P_a "somma di momenti prima dell'evento, deve essere uguale somma di momenti dopo evento" 9 * 15 + 0 = 0 + 2 * v 135 = 2 * vv = 135/2 v = 67,5 m / s