Risposta:
Usando la radice positiva nell'equazione quadratica, lo trovi
Spiegazione:
Conosciamo due equazioni dall'affermazione del problema. Il primo è che l'area del rettangolo è 12:
dove
Ora, sostituiamo la relazione lunghezza-larghezza nell'equazione dell'area:
Se espandiamo l'equazione di sinistra e sottrai 12 da entrambi i lati, abbiamo gli ingredienti di un'equazione quadratica:
dove:
collegalo all'equazione quadratica:
sappiamo che la larghezza deve essere un numero positivo, quindi ci preoccupiamo solo della radice positiva:
ora che conosciamo la larghezza (
La diagonale di un rettangolo è di 13 pollici. La lunghezza del rettangolo è 7 pollici più lunga della sua larghezza. Come trovi la lunghezza e la larghezza del rettangolo?
Chiamiamo la larghezza x. Quindi la lunghezza è x + 7 La diagonale è l'ipotenusa di un triangolo rettangolare. Quindi: d ^ 2 = l ^ 2 + w ^ 2 o (riempiendo ciò che sappiamo) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una semplice equazione quadratica che si risolve in: (x + 12) (x-5) = 0-> x = -12orx = 5 Solo la soluzione positiva è utilizzabile così: w = 5 e l = 12 Extra: Il triangolo (5,12,13) è il secondo più semplice triangolo pitagorico (dove tutti i lati sono numeri interi). Il più semplice è (3,4,
La lunghezza di un rettangolo è di 3,5 pollici in più della sua larghezza. Il perimetro del rettangolo è 31 pollici. Come trovi la lunghezza e la larghezza del rettangolo?
Lunghezza = 9.5 ", Larghezza = 6" Iniziare con l'equazione perimetrale: P = 2l + 2w. Quindi inserisci le informazioni che conosciamo. Il perimetro è 31 "e la lunghezza è uguale alla larghezza + 3,5". Quindi: 31 = 2 (w + 3,5) + 2w perché l = w + 3,5. Quindi risolviamo per w dividendo tutto per 2. Siamo quindi rimasti con 15,5 = w + 3,5 + w. Quindi sottrarre 3.5 e combinare le w per ottenere: 12 = 2w. Finalmente dividi per 2 di nuovo per trovare w e otteniamo 6 = w. Questo ci dice che la larghezza è pari a 6 pollici, metà del problema. Per trovare la lunghezza, inseriamo sempl
La larghezza e la lunghezza di un rettangolo sono numeri interi consecutivi. Se la larghezza è diminuita di 3 pollici. quindi l'area del rettangolo risultante è di 24 pollici quadrati Qual è l'area del rettangolo originale?
48 "pollici quadrati" "lascia che la larghezza" = n "allora lunghezza" = n + 2 n "e" n + 2 colore (blu) "siano numeri interi consecutivi" "la larghezza è diminuita di" 3 "pollici" rArr "larghezza "= n-3" area "=" lunghezza "xx" larghezza "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blu) "in forma standard" "i fattori di - 30 che sommano a - 1 sono + 5 e - 6" rArr (n-6) (n + 5) = 0 "equivalgono a ciascun fattore a zero e risolvono per n" n-6 = 0rArrn = 6