Qual è il dominio di h (x) = (2x ^ 2 + 5) / (sqrt (x-2))?

Qual è il dominio di h (x) = (2x ^ 2 + 5) / (sqrt (x-2))?
Anonim

Risposta:

Dominio: #x in (2, + oo) #

Spiegazione:

Per trovare il dominio di #h (x) #, è necessario prendere in considerazione il fatto che l'espressione sotto la radice quadrata deve essere positivo per numeri reali.

In altre parole, non puoi prendere la radice quadrata di un numero reale negativo e ottenere un altro numero reale come soluzione.

Inoltre, l'espressione sotto la radice quadrata non può essere uguale a zero, poiché ciò renderebbe il denominatore uguale a zero.

Quindi, devi averlo

#x - 2> 0 implica x> 2 #

Nella notazione a intervalli, il dominio della funzione è #x in (2, + oo) #.