Risposta:
# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #
Spiegazione:
#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #
# = int (-1/56 (1 / (x + 1)) + 71/7 (1 / (x-6)) - 97/8 (1 / (x-7))) dx #
# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #
Da dove provenivano quei coefficienti?
# (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) = a / (x + 1) + b / (x-6) + c / (x-7) #
Possiamo calcolare
#a = (1-2 (colore (blu) (- 1)) ^ 2) / (colore (rosso) (cancella (colore (nero) (((colore (blu) (- 1)) + 1)))) ((colore (blu) (- 1)) - 6) ((colore (blu) (- 1)) - 7)) = (-1) / ((- 7) (- 8)) = -1 / 56 #
#b = (1-2 (colore (blu) (6)) ^ 2) / (((colore (blu) (6)) + 1) colore (rosso) (annulla (colore (nero) (((colore (blu) (6)) - 6)))) ((colore (blu) (6)) - 7)) = (-71) / ((7) (- 1)) = 71/7 #
#c = (1-2 (colore (blu) (7)) ^ 2) / (((colore (blu) (7)) + 1) ((colore (blu) (7)) - 6) colore (rosso) (annulla (colore (nero) (((colore (blu) (7)) - 7))))) = (-97) / ((8) (1)) = -97 / 8 #
Una risposta esisteva già
Come si integra int 1 / (x ^ 2 (2x-1)) usando le frazioni parziali?
2ln | 2x-1 | -2ln | x | + 1 / x + C Dobbiamo trovare A, B, C tale che 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) per tutti x. Moltiplicare entrambi i lati di x ^ 2 (2x-1) per ottenere 1 = Ax (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB I coefficienti di equazione ci danno {(2A + C = 0), (2B-A = 0), (- B = 1):} E quindi abbiamo A = -2, -1 = B, C = 4. Sostituendo questo nell'equazione iniziale, otteniamo 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Ora, integralo con il termine int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx per ottenere 2ln | 2x-1 | -2ln | x | +
Come si integra int (x-9) / ((x + 3) (x-6) (x + 4)) usando le frazioni parziali?
È necessario decomporre (x-9) / ((x + 3) (x-6) (x + 4)) come una frazione parziale. Stai cercando a, b, c in RR tale che (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x -6) + c / (x + 4). Ti mostrerò come trovare un solo, perché b e c si trovano nello stesso identico modo. Si moltiplica entrambi i lati di x + 3, questo lo farà scomparire dal denominatore del lato sinistro e farlo apparire accanto a b e c. (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff (x -9) / ((x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Si valuta questo a x-3 per far sparire b e
Come si integra int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) usando le frazioni parziali?
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o Impostare l'equazione da risolvere per le variabili A, B, C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx Risolviamo prima A, B, C (4x ^ 2 + 6x-2) / ((x-1) (x + 1 ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) Semplifica (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B ( x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4x ^ 2 + 6x-2) / ((x-1