Risposta:
Il triangolo A è impossibile, ma teoricamente sarebbe 16, 6, 8 e 12, 4,5, 6 e 6, 2,25, 3
Spiegazione:
Poiché una proprietà di tutti i triangoli è che qualsiasi due lati di un triangolo sommati sono maggiori del lato rimanente. Poiché 3 + 4 è inferiore a 8 il triangolo A non esiste.
Tuttavia, se ciò fosse possibile, dipenderà dal lato con cui corrisponde.
-
Se il lato 3 diventasse 6
# A / 8 = 6/3 = C / 4 # A sarebbe 16 e C sarebbe 8
-
Se il 4 lato diventasse 6
# Q / 8 = R / 3 = 6/4 # Q sarebbe 12 e R sarebbe 4,5
-
Se il lato 8 diventasse 6
# 6/8 = Y / 3 = Z / 4 # Y sarebbe come 2,25 e Z sarebbe 3
Tutto ciò accade perché quando due forme sono simili, tutti i lati sono disegnati in proporzione alla figura originale, quindi devi ridimensionarli di conseguenza.
Il triangolo A ha i lati delle lunghezze 15, 12 e 18. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 3. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
(3,12 / 5,18 / 5), (15 / 4,3,9 / 2), (5 / 2,2,3)> Poiché il triangolo B ha 3 lati, ognuno di essi potrebbe essere di lunghezza 3 e quindi ci sono 3 diverse possibilità. Poiché i triangoli sono simili, i rapporti dei lati corrispondenti sono uguali. Assegna un nome ai 3 lati del triangolo B, a, bec, corrispondenti ai lati 15, 12 e 18 nel triangolo A. "----------------------- ----------------------------- "Se il lato a = 3 allora il rapporto dei lati corrispondenti = 3/15 = 1/5 quindi b = 12xx1 / 5 = 12/5 "e" c = 18xx1 / 5 = 18/5 I 3 lati di B = (3,12 / 5,18 / 5) "----------- ------
Il triangolo A ha i lati delle lunghezze 24, 15 e 21. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 24. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
Caso 1: colore (verde) (24, 15,21 Entrambi sono triangoli identici Caso 2: colore (blu) (24, 38.4, 33.6 Caso 3: colore (rosso) (24, 27.4286, 17.1429 Dato: Triangolo A (DeltaPQR) simile al Triangolo B (DeltaXYZ) PQ = r = 24, QR = p = 15, RP = q = 21 Caso 1: XY = z = 24 Quindi usando la proprietà triangoli simili, r / z = p / x = q / y 24 / 24 = 15 / x = 21 / a: x x = 15, y = 21 Caso 2: YZ = x = 24 24 / z = 15/24 = 21 / yz = (24 * 24) / 15 = 38,4 y = (21 * 24) / 15 = 33,6 Caso 2: ZX = y = 24 24 / z = 15 / x = 21/24 z = (24 * 24) / 21 = 27,4286 y = (15 * 24) / 21 = 17,1429
Il triangolo A ha i lati delle lunghezze 24, 15 e 18. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 24. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
Possibilità 1: 15 e 18 Possibilità 2: 20 e 32 Possibilità 3: 38.4 e 28.8 Per prima cosa definiamo cos'è un triangolo simile. Un triangolo simile è quello in cui gli angoli corrispondenti sono uguali, oppure i lati corrispondenti sono uguali o proporzionati. Nella prima possibilità, assumiamo che la lunghezza dei lati del triangolo B non sia cambiata, quindi le lunghezze originali sono mantenute, 15 e 18, mantenendo il triangolo proporzionato e quindi simile. Nella seconda possibilità, assumiamo che la lunghezza di un lato del triangolo A, in questo caso la lunghezza 18, sia stata molt