Risposta:
Caso 1) 16, 19.2, 25.6
Caso (2) 16, 13.3333, 21.3333
Caso (3) 16, 10, 12
Spiegazione:
I triangoli A e B sono simili.
Caso 1)
Le lunghezze possibili degli altri due lati del triangolo B sono
Caso (2)
Le lunghezze possibili degli altri due lati del triangolo B sono
Caso (3)
Le lunghezze possibili degli altri due lati del triangolo B sono
Il triangolo A ha i lati delle lunghezze 24, 16 e 18. Il triangolo B è simile al triangolo A e ha un lato con una lunghezza di 16. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
(16,32 / 3,12), (24,16,18), (64 / 3,128 / 9,16) Qualcuno dei 3 lati del triangolo B potrebbe essere di lunghezza 16 quindi ci sono 3 diverse possibilità per i lati di B. Poiché i triangoli sono simili, il colore (blu) "i rapporti dei lati corrispondenti sono uguali" Nome i 3 lati del triangolo B- a, b e c per corrispondere con i lati- 24, 16 e 18 nel triangolo A. colore (blu)"---------------------------------------------- --------------- "Se il lato a = 16 allora il rapporto dei lati corrispondenti = 16/24 = 2/3 e il lato b = 16xx2 / 3 = 32/3," lato c " = 18xx2 / 3 = 12 I 3 lati di B
Il triangolo A ha i lati delle lunghezze 24, 16 e 20. Il triangolo B è simile al triangolo A e ha un lato con una lunghezza di 16. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
96/5 & 64/5 o 24 & 20 o 32/3 40/3 Lascia x & y essere altri due lati del triangolo B simile al triangolo A con i lati 24, 16, 20. Il rapporto dei lati corrispondenti di due triangoli simili è lo stesso. Il terzo lato 16 del triangolo B può corrispondere a uno qualsiasi dei tre lati del triangolo A in qualsiasi ordine o sequenza possibile, quindi abbiamo seguito 3 casi Caso 1: frac {x} {24} = frac {y} {16} = frac {16} {20} x = 96/5, y = 64/5 Caso 2: frac {x} {24} = frac {y} {20} = frac {16} {16} x = 24, y = 20 Caso 3: frac {x} {16} = frac {y} {20} = frac {16} {24} x = 32/3, y = 40/3 quindi, alt
Il triangolo A ha i lati delle lunghezze 32, 24 e 28. Il triangolo B è simile al triangolo A e ha un lato con una lunghezza di 16. Quali sono le possibili lunghezze degli altri due lati del triangolo B?
Le possibili lunghezze del triangolo B sono Case (1) 16, 18.67, 21.33 Caso (2) 16, 13.71, 18.29 Caso (3) 16, 12, 14 I triangoli A e B sono simili. Caso (1): .16 / 24 = b / 28 = c / 32 b = (16 * 28) / 24 = 18,67 c = (16 * 32) / 24 = 21,33 Le possibili lunghezze degli altri due lati del triangolo B sono 16 , 18.67, 21.33 Caso (2): .16 / 28 = b / 24 = c / 32 b = (16 * 24) /28=13.71 c = (16 * 32) /28=18.29 Possibili lunghezze degli altri due lati di il triangolo B è 16, 13.71, 18.29 Caso (3): .16 / 32 = b / 24 = c / 28 b = (16 * 24) / 32 = 12 c = (16 * 28) / 32 = 14 Possibili lunghezze di gli altri due lati del triangolo