Risposta:
I lati del triangolo sono
Spiegazione:
Lascia che la lunghezza del lato b sia uguale alla distanza tra i due punti dati:
Se il lato b NON è uno dei lati uguali, allora l'altezza è una delle gambe di un triangolo rettangolo e metà del lato di lunghezza b,
Dobbiamo trovare se un triangolo con lati,
Ho usato un calcolatore di formula di Heron e ho scoperto che l'area è 64.
I lati del triangolo sono
Due angoli di un triangolo isoscele sono a (1, 2) e (3, 1). Se l'area del triangolo è 12, quali sono le lunghezze dei lati del triangolo?
La misura dei tre lati è (2.2361, 10.7906, 10.7906) Lunghezza a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Area del Delta = 12:. h = (Area) / (a / 2) = 12 / (2.2361 / 2) = 12 / 1.1181 = 10.7325 lato b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Poiché il triangolo è isoscele, anche il terzo lato = b = 10.7906 La misura dei tre lati è (2.2361, 10.7906, 10.7906)
Due angoli di un triangolo isoscele sono a (1, 2) e (1, 7). Se l'area del triangolo è 64, quali sono le lunghezze dei lati del triangolo?
"La lunghezza dei lati è" da 25.722 a 3 decimali ". La lunghezza della base è" 5 Notare il modo in cui ho mostrato il mio funzionamento. La matematica riguarda in parte la comunicazione! Lascia che la Delta ABC rappresenti quella nella domanda Lascia che la lunghezza dei lati AC e BC sia s Lascia che l'altezza verticale sia h Lascia che l'area sia a = 64 "unità" ^ 2 Sia A -> (x, y) -> ( 1,2) Sia B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ colore (blu) ("Per determinare la lunghezza AB") colore (verde) (AB "" = "&q
Due angoli di un triangolo isoscele sono a (1, 2) e (3, 1). Se l'area del triangolo è 2, quali sono le lunghezze dei lati del triangolo?
Trova l'altezza del triangolo e usa Pitagora. Inizia richiamando la formula per l'altezza di un triangolo H = (2A) / B. Sappiamo che A = 2, quindi l'inizio della domanda può essere risolto trovando la base. Gli angoli dati possono produrre un lato, che chiameremo la base. La distanza tra due coordinate sul piano XY è data dalla formula sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 e Y2 = 1 per ottenere sqrt ((- 2) ^ 2 + 1 ^ 2) o sqrt (5). Dal momento che non devi semplificare i radicali nel lavoro, l'altezza risulta essere 4 / sqrt (5). Ora dobbiamo trovare il lato. Notando che dise