Risposta:
Vedi una soluzione qui sotto:
Spiegazione:
La pendenza può essere trovata usando la formula:
Dove
Sostituendo i valori dai punti nel problema si ottiene:
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
Qual è l'equazione della linea che attraversa (0, -1) ed è perpendicolare alla linea che passa attraverso i seguenti punti: (8, -3), (1,0)?
7x-3y + 1 = 0 Pendenza della linea che unisce due punti (x_1, y_1) e (x_2, y_2) è data da (y_2-y_1) / (x_2-x_1) o (y_1-y_2) / (x_1-x_2 ) Poiché i punti sono (8, -3) e (1, 0), la pendenza della linea che li unisce sarà data da (0 - (- 3)) / (1-8) o (3) / (- 7) cioè -3/7. Il prodotto della pendenza di due linee perpendicolari è sempre -1. Quindi la pendenza della linea perpendicolare ad essa sarà 7/3 e quindi l'equazione in forma di pendenza può essere scritta come y = 7 / 3x + c Mentre questo passa attraverso il punto (0, -1), ponendo questi valori nell'equazione sopra, otteniamo -
Quando una forza di 40-N, parallela all'inclinazione e diretta verso l'inclinazione, viene applicata a una cassa su un'inclinazione senza attrito che è di 30 ° sopra l'orizzontale, l'accelerazione della cassa è di 2,0 m / s ^ 2, in salita . La massa della cassa è?
M ~ = 5,8 kg La forza netta della pendenza è data da F_ "net" = m * a F_ "net" è la somma della forza di 40 N sull'inclinazione e il componente del peso dell'oggetto, m * g, giù la pendenza. F_ "rete" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Risoluzione per m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 N m * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 N m * (6,9 m / s ^ 2) = 40 N m = (40 N) / (6,9 m / s ^ 2) Nota: il Newton equivale a kg * m / s ^ 2. (Vedi F = ma per confermare.) M = (40 kg * annulla (m / s ^ 2)) / (4.49 annulla (m / s ^ 2)) = 5.8 kg Spero che quest