Risposta:
Non esiste.
Spiegazione:
Come
Il valore non può avvicinarsi a un numero limite singolo e
Ecco un grafico per aiutarti a capire di più
graph {e ^ xsin (1 / x) -4.164, 4.604, -1.91, 2.473}
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Cosa è uguale? lim_ (x-> pi / 2) sin (cosx) / (cos ^ 2 (x / 2) -sin ^ 2 (x / 2)) =?
1 "Nota che:" colore (rosso) (cos ^ 2 (x) -sin ^ 2 (x) = cos (2x)) "Quindi qui abbiamo" lim_ {x-> pi / 2} sin (cos (x )) / cos (x) "Ora applica la regola de l'Hôptial:" = lim_ {x-> pi / 2} cos (cos (x)) * (- sin (x)) / (- sin (x)) = lim_ {x-> pi / 2} cos (cos (x)) = cos (cos (pi / 2)) = cos (0) = 1
Cos'è lim_ (xrarroo) (e ^ (2x) sin (1 / x)) / x ^ 2?
Lim_ (x-> oo) (e ^ (2x) sin (1 / x)) / x ^ 2 = oo Sia y = (e ^ (2x) sin (1 / x)) / x ^ 2 lny = ln ( (e ^ (2x) sin (1 / x)) / x ^ 2) lny = lne ^ (2x) + ln (sin (1 / x)) - lnx ^ 2 lny = 2xlne + ln (sin (1 / x )) - 2lnx lny = 2x + ln (sin (1 / x)) - 2lnx lim_ (x-> oo) [lny = 2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = lim_ (x-> oo) [2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = oo e ^ lny = e ^ oo y = oo