Risposta:
Spiegazione:
Converti prima in forme trigonometriche
Dividi uguale a uguale
Prendi nota della formula:
anche
buona giornata!
Come dividi (i + 3) / (-3i +7) in forma trigonometrica?
0.311 + 0.275i Prima riscriverò le espressioni sotto forma di un + bi (3 + i) / (7-3i) per un numero complesso z = a + bi, z = r (costheta + isintheta), dove: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Chiamiamo 3 + i z_1 e 7-3i z_2. Per z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0,32 ^ c z_1 = sqrt (10) (cos (0,32) + isin (0,32)) Per z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0.40 ^ c Tuttavia, poiché 7-3i è nel quadrante 4, dobbiamo ottenere un equiv
Come dividi (2i + 5) / (-7 i + 7) in forma trigonometrica?
0.54 (cos (1.17) + isin (1.17)) Iniziamo a dividerli in due numeri complessi separati, uno dei quali è il numeratore, 2i + 5 e uno il denominatore, -7i + 7. Vogliamo ottenerli dalla forma lineare (x + iy) a trigonometrica (r (costheta + isintheta) dove theta è l'argomento e r è il modulo.Per 2i + 5 otteniamo r = sqrt (2 ^ 2 + 5 ^ 2 ) = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0,38 "rad" e per -7i + 7 otteniamo r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 Elaborazione l'argomento per il secondo è più difficile, perché deve essere compreso tra -pi e pi. Sappiamo che -7i + 7
Come dividi (i + 2) / (9i + 14) in forma trigonometrica?
0.134-0.015i Per un numero complesso z = a + bi può essere rappresentato come z = r (costheta + isintheta) dove r = sqrt (a ^ 2 + b ^ 2) e theta = tan ^ -1 (b / a ) (2 + i) / (14 + 9i) = (sqrt (2 ^ 2 + 1 ^ 2) (cos (tan ^ -1 (1/2)) + isin (tan ^ -1 (1/2)) )) / (sqrt (14 ^ 2 + 9 ^ 2) (cos (tan ^ -1 (9/14)) + ISIN (tan ^ -1 (9/14)))) ~~ (sqrt5 (cos (0,46 ) + isin (0.46))) / (sqrt277 (cos (0.57) + isin (0.57))) Dato z_1 = r_1 (costheta_1 + isintheta_1) e z_2 = r_2 (costheta_2 + isintheta_2), z_1 / z_2 = r_1 / r_2 ( cos (theta_1-theta_2) + isin (theta_1-theta_2)) z_1 / z_2 = sqrt5 / sqrt277 (cos (0.46-0.57) + isin (0.46-0.