Qual è il dominio e l'intervallo di g (x) = 2 / (x-1)?

Qual è il dominio e l'intervallo di g (x) = 2 / (x-1)?
Anonim

Risposta:

Dominio: # (- oo, 1) uu (1, + oo) #

Gamma: # (- oo, 0) uu (0, + oo) #

Spiegazione:

Il dominio della funzione sarà limitato dal fatto che il denominatore non può essere uguale a zero.

# x-1! = 0 implica x! = 1 #

Il dominio sarà così # RR- {1} #, o # (- oo, 1) uu (1, + oo) #.

L'intervallo della funzione sarà limitato dal fatto che questa espressione non può essere uguale a zero, poiché il numeratore è a costante.

L'intervallo della funzione sarà quindi # RR- {0} #, o # (- oo, 0) uu (0, + oo) #.

graph {2 / (x-1) -7.9, 7.9, -3.95, 3.95}