Come differenziate g (x) = (2x ^ 2 + 4x - 3) (5x ^ 3 + 2x + 2) usando la regola del prodotto?

Come differenziate g (x) = (2x ^ 2 + 4x - 3) (5x ^ 3 + 2x + 2) usando la regola del prodotto?
Anonim

Risposta:

#g '(x) = d / dxg (x) = 50x ^ 4 + 80x ^ 3-33x ^ 2 + 24x + 2 #

Spiegazione:

Per il derivato del prodotto, abbiamo la formula

# d / dx (uv) = u dv / dx + v du / dx #

Dal dato #G (x) = (2x ^ 2 + 4x-3) (5x ^ 3 + 2x + 2) #

Lasciamo # U = 2x ^ 2 + 4x-3 # e # V = 5x ^ 3 + 2x + 2 #

# d / dx (g (x)) = (2x ^ 2 + 4x-3) d / dx (5x ^ 3 + 2x + 2) + (5x ^ 3 + 2x + 2) d / dx (2x ^ 2 + 4x-3) #

# d / dx (g (x)) = (2x ^ 2 + 4x-3) (15x ^ 2 + 2) + (5x ^ 3 + 2x + 2) (4x + 4) #

Espandi per semplificare

# d / dx (g (x)) = (2x ^ 2 + 4x-3) (15x ^ 2 + 2) + (5x ^ 3 + 2x + 2) (4x + 4) #

# D / dx (g (x)) = 30x ^ 4 + 4x ^ 2 + 60x ^ 3 + 8x-45x ^ 2-6 + 20x ^ 4 + 20x ^ 3 + 8x ^ 2 + 8x + 8x + 8 #

Combina termini simili

# D / dx (g (x)) = 50x ^ 4 + 80x ^ 3-33x ^ 2 + 24x + 2 #

Dio benedica … Spero che la spiegazione sia utile.