
Risposta:
L'ampiezza è 3 e il periodo è
Spiegazione:
Un modo per scrivere la forma generale della funzione seno è
A = ampiezza, quindi 3 in questo caso
B è il periodo ed è definito come
Quindi, per risolvere per B,
Questa funzione seno viene anche tradotta 2 unità in basso sull'asse y.
Come si usa la trasformazione per rappresentare graficamente la funzione coseno e determinare l'ampiezza e il periodo di y = -cos (x-pi / 4)?

Una delle forme standard di una funzione trigonometrica è y = ACos (Bx + C) + DA è l'ampiezza (valore assoluto poiché è una distanza) B influenza il periodo tramite la formula Periodo = {2 pi} / BC è lo sfasamento D è lo spostamento verticale Nel tuo caso, A = -1, B = 1, C = - pi / 4 D = 0 Quindi, la tua ampiezza è 1 Periodo = {2 pi} / B -> {2 pi} / 1-> 2 pi Spostamento di fase = pi / 4 verso DESTRA (non a sinistra come si potrebbe pensare) Spostamento verticale = 0
Come si usa la trasformazione per rappresentare graficamente la funzione sin e determinare l'ampiezza e il periodo di y = -4sin (2x) +2?

Ampiezza -4 Periodo = pi L'ampiezza è solo f (x) = asin (b (x-c)) + d la parte della funzione è l'ampiezza The period = (2pi) / c
Come si usa la trasformazione per rappresentare graficamente la funzione coseno e determinare l'ampiezza e il periodo di y = cos (-4x)?

L'amplificatore è 1 Il periodo è -pi / 2 Acos (B (xC) + DA è il periodo di ampiezza è (2pi) / BC è la traduzione verticale D è la traduzione orizzontale Così amplificatore in questo caso è 1 Periodo è (2pi) / - 4 = - (pi) / 2