Risposta:
Il polinomio zero è semplicemente
Spiegazione:
Quando parliamo di aggiunta di numeri,
Per qualsiasi numero
Possiamo anche aggiungere e sottrarre polinomi. Il "polinomio zero" è l'identità sotto l'addizione e la sottrazione dei polinomi. Per qualsiasi polinomio
Ottieni un polinomio quadratico con le seguenti condizioni ?? 1. la somma di zero = 1/3, il prodotto di zero = 1/2
6x ^ 2-2x + 3 = 0 La formula quadratica è x = (- b + -sqrt (b ^ 2-4ac)) / (2a) Somma di due radici: (-b + sqrt (b ^ 2-4ac)) / (2a) + (- b-sqrt (b ^ 2-4ac)) / (2a) = - (2b) / (2a) = - b / a -b / a = 1/3 b = -a / 3 Prodotto di due radici: (-b + sqrt (b ^ 2-4ac)) / (2a) (- b-sqrt (b ^ 2-4ac)) / (2a) = ((- b + sqrt (b ^ 2 -4ac)) (- b-sqrt (b ^ 2-4ac))) / (4a ^ 2) = (b ^ 2-b ^ 2 + 4ac) / (4a ^ 2) = c / ac / a = 1 / 2 c = a / 2 Abbiamo ax ^ 2 + bx + c = 0 6x ^ 2-2x + 3 = 0 Dimostrazione: 6x ^ 2-2x + 3 = 0 x = (2-sqrt ((- 2) ^ 2-4 (6 * 3))) / (2 * 6) = (2 + -sqrt (4-72)) / 12 = (2 + -2sqrt (17) i) / 12 = (1 + -sqrt ( 17) i)
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5
Quando il polinomio p (x) è diviso per (x + 2) il quoziente è x ^ 2 + 3x + 2 e il resto è 4. Qual è il polinomio p (x)?
X ^ 3 + 5x ^ 2 + 8x + 6 abbiamo p (x) = (x ^ 2 + 3x + 2) (x + 2) +2 = x ^ 3 + 2x ^ 2 + 3x ^ 2 + 6x + 2x + 4 + 2 = x ^ 3 + 5x ^ 2 + 8x + 6