Risposta:
Lunghezza e larghezza sono rispettivamente 20 e 17 pollici.
Spiegazione:
Prima di tutto, consideriamo
Ora sappiamo che l'area del rettangolo è data da:
ed è uguale a:
Quindi otteniamo l'equazione quadratica:
Cerchiamo di risolverlo:
dove
Otteniamo due soluzioni:
Dato che stiamo parlando di pollici, dobbiamo prendere quello positivo.
Così:
# "Lunghezza" = x = 20 "pollici" # # "Larghezza" = y = x-3 = 17 "pollici" #
La lunghezza di un rettangolo è di 4 pollici in più della sua larghezza. Se 2 pollici sono presi dalla lunghezza e aggiunti alla larghezza e la figura diventa un quadrato con un'area di 361 pollici quadrati. Quali sono le dimensioni della figura originale?
Ho trovato una lunghezza di 25 "in" e una larghezza di 21 "in". Ho provato questo:
La lunghezza di un rettangolo è due volte la sua larghezza. Se l'area del rettangolo è inferiore a 50 metri quadrati, qual è la larghezza massima del rettangolo?
Chiameremo questa larghezza = x, che rende la lunghezza = 2x Area = lunghezza volte la larghezza, oppure: 2x * x <50-> 2x ^ 2 <50-> x ^ 2 <25-> x <sqrt25-> x <5 Risposta: la larghezza massima è (appena sotto) 5 metri. Nota: in pura matematica, x ^ 2 <25 ti darebbe anche la risposta: x> -5, o combinata -5 <x <+5 In questo esempio pratico, scartiamo l'altra risposta.
La larghezza e la lunghezza di un rettangolo sono numeri interi consecutivi. Se la larghezza è diminuita di 3 pollici. quindi l'area del rettangolo risultante è di 24 pollici quadrati Qual è l'area del rettangolo originale?
48 "pollici quadrati" "lascia che la larghezza" = n "allora lunghezza" = n + 2 n "e" n + 2 colore (blu) "siano numeri interi consecutivi" "la larghezza è diminuita di" 3 "pollici" rArr "larghezza "= n-3" area "=" lunghezza "xx" larghezza "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blu) "in forma standard" "i fattori di - 30 che sommano a - 1 sono + 5 e - 6" rArr (n-6) (n + 5) = 0 "equivalgono a ciascun fattore a zero e risolvono per n" n-6 = 0rArrn = 6