Risposta:
y = mx + b Calcola la pendenza, m, dai valori di punto dati, risolvi per b usando uno dei valori punto e controlla la tua soluzione usando gli altri valori punto.
Spiegazione:
Una linea può essere considerata come il rapporto tra il cambiamento tra posizioni orizzontali (x) e verticali (y). Quindi, per qualsiasi due punti definiti da coordinate cartesiane (planari) come quelle date in questo problema, è sufficiente impostare le due modifiche (differenze) e quindi fare il rapporto per ottenere la pendenza, m.
Differenza verticale "y" = y2 - y1 = 2 - 6 = -4
Differenza orizzontale "x" = x2 - x1 = 5 - -9 = 14
Rapporto = "salita sopra corsa" o verticale sopra orizzontale = -4/14 = -2/7 per la pendenza, m.
Una linea ha la forma generale di y = mx + b, o la posizione verticale è il prodotto della pendenza e della posizione orizzontale, x, più il punto in cui la linea attraversa (intercetta) l'asse x (la linea in cui z è sempre zero.) Quindi, una volta calcolata la pendenza, è possibile inserire uno qualsiasi dei due punti noti nell'equazione, lasciandoci solo con l'intercetta 'b' sconosciuta.
6 = (-2/7) (- 9) + b; 6 = 18/7 + b; 42/7 - 18/7 = b; 24/7 = b
Quindi l'equazione finale è y = - (2/7) x + 24/7
Quindi controlliamo questo sostituendo l'altro punto conosciuto nell'equazione:
2 = (-2/7) (5) + 24/7; 2 = -10/7 + 24/7; 2 = 14/7; 2 = 2 CORRETTO!
L'equazione di una linea è 2x + 3y - 7 = 0, trova: - (1) slope of line (2) l'equazione di una linea perpendicolare alla linea data e passa attraverso l'intersezione della linea x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 colore (bianco) ("ddd") -> colore (bianco) ("ddd") y = 3 / 2x + 1 Prima parte in molti dettagli che dimostrano come funzionano i primi principi. Una volta abituati a questi e usando scorciatoie userete molto meno linee. color (blue) ("Determina l'intercetta delle equazioni iniziali") x-y + 2 = 0 "" ....... Equazione (1) 3x + y-10 = 0 "" .... Equazione ( 2) Sottrai x da entrambi i lati di Eqn (1) dando -y + 2 = -x Moltiplica entrambi i lati per (-1) + y-2 = + x "" .......... Equazione (1_a ) Uso di Eqn (1_a) sostituto di x in Eqn (2) colore (v
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
La linea A e la linea B sono parallele. La pendenza della linea A è -2. Qual è il valore di x se la pendenza della Linea B è 3x + 3?
X = -5 / 3 Sia m_A e m_B siano i gradienti delle linee A e B rispettivamente, se A e B sono paralleli, quindi m_A = m_B Quindi, sappiamo che -2 = 3x + 3 Dobbiamo riorganizzare per trovare x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Dimostrazione: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A