Risposta:
Non dimenticare il termine medio e le equazioni trigonometriche.
Spiegazione:
Quindi:
Risposta:
Vedi la spiegazione
Spiegazione:
Sappiamo,
Sostituto
Quindi dimostrato
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Come andrei a dimostrare che questa è un'identità? Grazie. (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2)) = (1 + cosx) / (3-cosx)
LHS = (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2) = (cos ^ 2 (x / 2)) / (1 + 1-cos ^ 2 (x / 2 )) = (2cos ^ 2 (x / 2)) / (2-2cos ^ 2 (x / 2)) = (1 + cosx) / (4- (1 + cosx)) = (1 + cosx) / ( 3-cosx) = RHS
Dimostrare (1 + sinx + icosx) / (1 + sinx-icosx) = sinx + icosx?
Vedi sotto. Usando l'identità di de Moivre che afferma e ^ (ix) = cos x + i sin x abbiamo (1 + e ^ (ix)) / (1 + e ^ (- ix)) = e ^ (ix) (1+ e ^ (- ix)) / (1 + e ^ (- ix)) = e ^ (ix) NOTA e ^ (ix) (1 + e ^ (- ix)) = (cos x + isinx) (1+ cosx-i sinx) = cosx + cos ^ 2x + isinx + sin ^ 2x = 1 + cosx + isinx o 1 + cosx + isinx = (cos x + isinx) (1 + cosx-i sinx)