Risposta:
Spiegazione:
Il modo in cui la domanda è formulata, dobbiamo prima trovare la differenza tra i due termini prima di prendere la radice quadrata.
La metà di un numero può essere rappresentata come variabile (in questo caso,
Due terzi di un numero diverso possono essere rappresentati come variabili diverse (in questo caso,
Successivamente, sottraiamo il secondo termine dal primo termine per trovare la differenza:
Ora, tutto ciò che dobbiamo fare è mettere l'intera espressione sotto un simbolo radicale per ottenere la radice quadrata:
Qual è la forma semplificata di radice quadrata di 10 - radice quadrata di 5 su radice quadrata di 10 + radice quadrata di 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) color (bianco) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) colore (bianco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (white) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) colore (bianco) ("XXX") = (2-2sqrt2 + 1) / (2-1) colore (bianco) ( "XXX") = 3-2sqrt (2)
Qual è la radice quadrata di 3 + la radice quadrata di 72 - la radice quadrata di 128 + la radice quadrata di 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sappiamo che 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, quindi sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sappiamo che 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, quindi sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sappiamo che 128 = 2 ^ 7 , quindi sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Semplificando 7sqrt (3) - 2sqrt (2)
Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) La prima cosa che possiamo fare è cancellare le radici su quelle con i poteri pari. Poiché: sqrt (x ^ 2) = xe sqrt (x ^ 4) = x ^ 2 per qualsiasi numero, possiamo solo dire che sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ora, 7 ^ 3 può essere riscritto come 7 ^ 2 * 7, e che 7 ^ 2 può uscire dalla radice! Lo stesso vale per 7 ^ 5 ma è stato riscritto come 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7)