Come si semplifica f (theta) = csc2theta-sec2theta-3tan2theta alle funzioni trigonometriche di un'unità theta?

Come si semplifica f (theta) = csc2theta-sec2theta-3tan2theta alle funzioni trigonometriche di un'unità theta?
Anonim

Risposta:

#f (theta) = (cos ^ 2theta-sin ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / (2sinthetacos ^ 3theta-sin ^ 3thetacostheta) #

Spiegazione:

Innanzitutto, riscrivi come:#f (theta) = 1 / sin (2theta) -1 / cos (2theta) -sin (2theta) / cos (2theta) #

Quindi come:

#f (theta) = 1 / sin (2theta) - (1-sin (2theta)) / cos (2theta) = (cos (2theta) -sin (2theta) -sin ^ 2 (2theta)) / (sin (2theta) cos (2theta)) #

Noi useremo:

#cos (A + B) = cosAcosB-sinAsinB #

#sin (A + B) = sinAcosB + cosAsinB #

Quindi, otteniamo:

#f (theta) = (cos ^ 2theta-sin ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / ((2sinthetacostheta) (cos ^ 2theta-sin ^ 2theta)) #

#f (theta) = (cos ^ 2theta-sin ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / (2sinthetacos ^ 3theta-sin ^ 3thetacostheta) #