Risposta:
Questo è un problema di sistemi di equazioni.
Spiegazione:
Supponendo che la lunghezza sia x e la larghezza sia y.
La larghezza può essere di 4 o 5 piedi.
Esercizi di pratica:
-
L'area di un rettangolo è di 108 metri quadrati e il perimetro è di 62 piedi. Trova la distanza tra i due angoli (la distanza delle diagonali).
-
Un triangolo rettangolo ha un'area di 22 piedi e un perimetro di
# 15 + sqrt (137) # . Trova l'ipotenusa del triangolo.
In bocca al lupo!
L'area di un rettangolo è di 100 pollici quadrati. Il perimetro del rettangolo è di 40 pollici. Un secondo rettangolo ha la stessa area ma un perimetro diverso. Il secondo rettangolo è un quadrato?
No. Il secondo rettangolo non è un quadrato. Il motivo per cui il secondo rettangolo non è un quadrato è perché il primo rettangolo è il quadrato. Ad esempio, se il primo rettangolo (a.k.a il quadrato) ha un perimetro di 100 pollici quadrati e un perimetro di 40 pollici, allora un lato deve avere un valore di 10. Con questo detto, giustifichiamo la dichiarazione di cui sopra. Se il primo rettangolo è effettivamente un quadrato *, allora tutti i lati devono essere uguali. Inoltre, questo avrebbe davvero senso per il motivo che se uno dei suoi lati è 10 allora tutti gli altri suoi lati devo
La lunghezza di un rettangolo è 4 meno del doppio della larghezza. l'area del rettangolo è di 70 piedi quadrati. trova la larghezza, w, del rettangolo algebricamente. spiegare perché una delle soluzioni per w non è praticabile. ?
Una risposta risulta negativa e la lunghezza non può mai essere 0 o inferiore. Sia w = "width" Sia 2w - 4 = "length" "Area" = ("length") ("width") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 So w = 7 o w = -5 w = -5 non è fattibile perché le misurazioni devono essere sopra lo zero.
Qual è il tasso di variazione della larghezza (in ft / sec) quando l'altezza è di 10 piedi, se l'altezza diminuisce in quel momento al ritmo di 1 ft / sec. Un rettangolo ha un'altezza variabile e una larghezza variabile , ma l'altezza e la larghezza cambiano in modo che l'area del rettangolo sia sempre di 60 piedi quadrati?
La velocità di variazione della larghezza con il tempo (dW) / (dt) = 0.6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Quindi (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Quindi (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Quindi quando h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"