Risposta:
(vedi immagine)
Spiegazione:
Supponendo un asse reale orizzontale e un asse immaginario verticale (come nella foto)
con un punto iniziale di
Vettore A = 125 m / s, 40 gradi a nord di ovest. Il vettore B è 185 m / s, 30 gradi a sud ovest e il vettore C è 175 m / s 50 a est del sud. Come trovi A + B-C con il metodo di risoluzione vettoriale?
Il vettore risultante sarà 402.7m / s con un angolo standard di 165.6 ° Innanzitutto, risolverai ogni vettore (dato qui in forma standard) in componenti rettangolari (xey). Quindi, si sommeranno i componenti x e si sommeranno i componenti y. Questo ti darà la risposta che cerchi, ma in forma rettangolare. Infine, converti il risultato in forma standard. Ecco come: Resolve in componenti rettangolari A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s B_x = 185 cos (-150 °) = 185 (-0,866) = -160,21 m / s B_y = 185 sin (-150 °) = 185 (-0,5) = -9
Lascia che l'angolo tra due vettori diversi da zero A (vettore) e B (vettore) sia 120 (gradi) e sia risultante C (vettore). Quindi quale dei seguenti è (sono) corretto?
Opzione (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad quadrato abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad triangolo abs (bbA - bbB) ^ 2 - C ^ 2 = triangolo - quadrato = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)
Dato il numero complesso 5 - 3i come si fa a rappresentare graficamente il numero complesso nel piano complesso?
Disegna due assi perpendicolari, come per un grafico y, x, ma invece di yandx usa iandr. Un grafico di (r, i) sarà così il r è il numero reale, e io è il numero immaginario. Quindi, traccia un punto su (5, -3) sul grafico r, i.