Risposta:
Spiegazione:
Se
Quindi vorremmo trovare un paio di fattori con il prodotto
Quindi la larghezza del rettangolo è
Metodo alternativo
Invece di factoring in questo modo, potremmo prendere l'equazione:
Riorganizzare come
e risolvi usando la formula quadratica per ottenere:
questo è
Siamo interessati solo alla larghezza positiva così
Trovare la diagnosi
Utilizzando il teorema di Pitagora, la lunghezza della diagonale in cm sarà:
Utilizzando una calcolatrice trova
La lunghezza di un rettangolo è 4 meno del doppio della larghezza. l'area del rettangolo è di 70 piedi quadrati. trova la larghezza, w, del rettangolo algebricamente. spiegare perché una delle soluzioni per w non è praticabile. ?
Una risposta risulta negativa e la lunghezza non può mai essere 0 o inferiore. Sia w = "width" Sia 2w - 4 = "length" "Area" = ("length") ("width") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 So w = 7 o w = -5 w = -5 non è fattibile perché le misurazioni devono essere sopra lo zero.
La lunghezza di un pavimento rettangolare è di 12 metri in meno del doppio della sua larghezza. Se una diagonale del rettangolo è di 30 metri, come trovi la lunghezza e la larghezza del pavimento?
Lunghezza = 24 m Larghezza = 18 m Larghezza (W) = W Lunghezza (L) = 2 * W-12 Diagonale (D) = 30 Secondo il Teorema di Pitagora: 30 ^ 2 = W ^ 2 + (2.W-12) ^ 2 900 = W ^ 2 + 4W ^ 2-48W + 12 ^ 2 900 = 5W ^ 2-48W + 144 5W ^ 2-48W-756 = 0 Risoluzione dell'equazione quadratica: Delta = 48 ^ 2-4 * 5 * (-756) = 2304 + 15120 = 17424 W1 = (- (- 48) + sqrt (17424)) / (2 * 5) = (48 + 132) / 10 W1 = 18 W2 = (- (- 48) - sqrt (17424)) / (2 * 5) = (48-132) / 10 W2 = -8,4 (impossibile) Quindi, W = 18m L = (2 * 18) -12 = 24m
Originariamente un rettangolo era il doppio della larghezza. Quando 4 m sono stati aggiunti alla sua lunghezza e 3 m sottratti dalla sua larghezza, il rettangolo risultante aveva un'area di 600 m ^ 2. Come trovi le dimensioni del nuovo rettangolo?
Larghezza originale = 18 metri Lunghezza originale = 36 metri Il trucco con questo tipo di domanda è di fare uno schizzo veloce. In questo modo puoi vedere cosa sta succedendo e trovare un metodo di soluzione. Noto: area "larghezza" xx "lunghezza" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Sottrai 600 da entrambi i lati => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 Non è logico che una lunghezza sia negativa in questo contesto, quindi w! = - 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Controllo (36 + 4) (18-3) = 40xx15 = 600 m ^ 2